PD CEN/TR 17603-60:2022

This is a preview of "PD CEN/TR 17603-60:2...". Click here to purchase the full version from the ANSI store.

BSI Standards Publication

Space engineering — Control engineering handbook

National foreword

This Published Document is the UK implementation of CEN/TR 17603-60:2022.

The UK participation in its preparation was entrusted to Technical Committee ACE/68, Space systems and operations.

A list of organizations represented on this committee can be obtained on request to its committee manager.

Contractual and legal considerations

This publication has been prepared in good faith, however no representation, warranty, assurance or undertaking (express or implied) is or will be made, and no responsibility or liability is or will be accepted by BSI in relation to the adequacy, accuracy, completeness or reasonableness of this publication. All and any such responsibility and liability is expressly disclaimed to the full extent permitted by the law.

This publication is provided as is, and is to be used at the recipient's own risk.

The recipient is advised to consider seeking professional guidance with respect to its use of this publication.

This publication is not intended to constitute a contract. Users are responsible for its correct application.

© The British Standards Institution 2022 Published by BSI Standards Limited 2022

ISBN 978 0 539 18747 2

ICS 49.140

Compliance with a Published Document cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 March 2022.

Amendments/corrigenda issued since publication

Date Text affected

TECHNICAL DEDODT

<u>сем /тр 17602 сл</u>

This is a preview of "PD CEN/TR 17603-60:2...". Click here to purchase the full version from the ANSI store.

TECHNISCHER BERICHT

January 2022

ICS 49.140

English version

Space engineering - Control engineering handbook

Ingénierie spatiale - Manuel d'ingénierie du contrôle

Raumfahrttechnik - Handbuch zur Regelungstechnik

This Technical Report was approved by CEN on 29 November 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Table of contents

Europe	ean Fore	eword	4
Introdu	uction		5
1 Scop	e		6
2 Refe	rences.		7
3 Term	is, defin	itions and abbreviated terms	8
3.1	Terms f	rom other documents	8
3.2	Terms s	pecific to the present handbook	8
3.3	Abbrevi	ated terms	12
4 Spac	e syste	m control engineering process	14
4.1	General	l	14
	4.1.1	The general control structure	14
	4.1.2	Control engineering activities	17
	4.1.3	Organization of this Handbook	17
4.2	Definitio	on of the control engineering process	17
4.3	Control	engineering tasks per project phase	18
5 Cont	rol engi	neering process recommendations	24
5.1	Integrat	ion and control	24
	5.1.1	General	24
	5.1.2	Organization and planning of CE activities	24
	5.1.3	Contribution to system engineering data base and documentation	24
	5.1.4	Management of interfaces with other disciplines	24
	5.1.5	Contribution to human factors engineering	25
	5.1.6	Budget and margin philosophy for control	25
	5.1.7	Assessment of control technology and cost effectiveness	25
	5.1.8	Risk management	25
	5.1.9	Support to control components procurement	25
	5.1.10	Support to change management involving control	26

		management	26
5.2	Require	ements engineering	26
	5.2.1	General	26
	5.2.2	Generation of control requirements	26
	5.2.3	Allocation of control requirements to control components	27
	5.2.4	Control verification requirements	30
	5.2.5	Control operations requirements	30
5.3	Analysi	s	30
	5.3.1	General	30
	5.3.2	Analysis tasks, methods and tools	31
	5.3.3	Requirements analysis	32
	5.3.4	Disturbance analysis	33
	5.3.5	Performance analysis	33
5.4	Design	and configuration	35
	5.4.1	General	35
	5.4.2	Functional design	36
	5.4.3	Operational design	36
	5.4.4	Control implementation architecture	36
	5.4.5	Controller design	37
5.5	Verifica	tion and validation	38
	5.5.1	Definition of control verification strategy	38
	5.5.2	Preliminary verification of performance	39
	5.5.3	Final functional and performance verification	39
	5.5.4	In-flight validation	39

Figures

Figure 4-1: General control structure	14
Figure 4-2: Example of controller structure	16
Figure 4-3: Interaction between CE activities	18

Tables

Table 4-1: Summary of control engineering tasks	19
Table 4-2: Control engineering inputs, tasks and outputs, Phase 0/A	.20
Table 4-3: Control engineering inputs, tasks and outputs, Phase B	21
Table 4-4: Control engineering inputs, tasks and outputs, Phase C/D	22
Table 4-5: Control engineering inputs, tasks and outputs, Phase E/F	23
Table 5-1: Contributions of analysis to the CE process	31

European Foreword

This document (CEN/TR 17603-60:2022) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-60.

This Technical report (CEN/TR 17603-60:2022) originates from ECSS-E-HB-60A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Introduction

Control engineering, particularly as applied to space systems, is a multi-disciplinary field. The analysis, design and implementation of complex (end to end) control systems include aspects of system engineering, electrical and electronic engineering, mechanical engineering, software engineering, communications, ground systems and operations – all of which have dedicated ECSS engineering standards and handbooks. This Handbook is not intended to duplicate them.

This Handbook focuses on the specific issues involved in control engineering and is intended to be used as a structured set of systematic engineering provisions, referring to the specific standards and handbooks of the discipline where appropriate. For this, and reasons such as the very rapid progress of control component technologies and associated "de facto" standards, this Handbook does not go to the level of describing equipment or interfaces.

This Handbook is not intended to replace textbook material on control systems theory or technology, and such material is intentionally avoided. The readers and users of this Handbook are assumed to possess general knowledge of control systems engineering and its applications to space missions.

This Handbook deals with control systems developed as part of a space project. It is applicable to all the elements of a space system, including the space segment, the ground segment and the launch service segment.

The handbook covers all aspects of space control engineering including requirements definition, analysis, design, production, verification and validation, transfer, operations and maintenance.

It describes the scope of the space control engineering process and its interfaces with management and product assurance, and explains how they apply to the control engineering process.