This document provides clear definitions of the quantities in current use, and provides a single source of information on appropriate specimen collection, preanalytical variables, calibration, and quality control for blood pH and gas analysis and related measurements.

A guideline for global application developed through the NCCLS consensus process.
NCCLS...
Serving the World’s Medical Science Community Through Voluntary Consensus

NCCLS is an international, interdisciplinary, nonprofit, standards-developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the healthcare community. It is recognized worldwide for the application of its unique consensus process in the development of standards and guidelines for patient testing and related healthcare issues. NCCLS is based on the principle that consensus is an effective and cost-effective way to improve patient testing and healthcare services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, NCCLS provides an open and unbiased forum to address critical issues affecting the quality of patient testing and health care.

PUBLICATIONS

An NCCLS document is published as a standard, guideline, or committee report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS

The NCCLS voluntary consensus process is a protocol establishing formal criteria for:

- the authorization of a project
- the development and open review of documents
- the revision of documents in response to comments by users
- the acceptance of a document as a consensus standard or guideline.

Most NCCLS documents are subject to two levels of consensus—“proposed” and “approved.” Depending on the need for field evaluation or data collection, documents may also be made available for review at an intermediate (i.e., “tentative”) consensus level.

Proposed An NCCLS consensus document undergoes the first stage of review by the healthcare community as a proposed standard or guideline. The document should receive a wide and thorough technical review, including an overall review of its scope, approach, and utility, and a line-by-line review of its technical and editorial content.

Tentative A tentative standard or guideline is made available for review and comment only when a recommended method has a well-defined need for a field evaluation or when a recommended protocol requires that specific data be collected. It should be reviewed to ensure its utility.

Approved An approved standard or guideline has achieved consensus within the healthcare community. It should be reviewed to assess the utility of the final document, to ensure attainment of consensus (i.e., that comments on earlier versions have been satisfactorily addressed), and to identify the need for additional consensus documents.

NCCLS standards and guidelines represent a consensus opinion on good practices and reflect the substantial agreement by materially affected, competent, and interested parties obtained by following NCCLS’s established consensus procedures. Provisions in NCCLS standards and guidelines may be more or less stringent than applicable regulations. Consequently, conformance to this voluntary consensus document does not relieve the user of responsibility for compliance with applicable regulations.

COMMENTS

The comments of users are essential to the consensus process. Anyone may submit a comment, and all comments are addressed, according to the consensus process, by the NCCLS committee that wrote the document. All comments, including those that result in a change to the document when published at the next consensus level and those that do not result in a change, are responded to by the committee in an appendix to the document. Readers are strongly encouraged to comment in any form and at any time on any NCCLS document. Address comments to the NCCLS Executive Offices, 940 West Valley Road, Suite 1400, Wayne, PA 19087, USA.

VOLUNTEER PARTICIPATION

Healthcare professionals in all specialties are urged to volunteer for participation in NCCLS projects. Please contact the NCCLS Executive Offices for additional information on committee participation.
Blood Gas and pH Analysis and Related Measurements; Approved Guideline

Abstract

This guideline is a consolidation of six NCCLS documents and projects. The Area Committee on Clinical Chemistry and Toxicology concluded that NCCLS’s constituencies (professions, government, and industry) would be better served with the production of a single document that retains the essential information from the six original documents while making it even more relevant and useful. It addresses blood gas, pH, and related measurements (e.g., fractional oxyhemoglobin, oxygen content, hemoglobin-oxygen saturation, and selected electrolytes as measured in whole blood). It defines terminology and discusses performance characteristics as well as preanalytical variables and analytical considerations. It also addresses quality control issues.

This guideline consolidates and updates:

- C12-A—Definitions of Quantities and Conventions Related to Blood pH and Gas Analysis; Approved Standard;
- C21-A—Performance Characteristics for Devices Measuring pO₂ and pCO₂ in Blood Samples; Approved Standard;
- C25-A—Fractional Oxyhemoglobin, Oxygen Content and Saturation, and Related Quantities in Blood: Terminology, Measurement and Reporting; Approved Guideline;
- C27-A—Blood Gas Pre-Analytical Considerations: Specimen Collection and Controls; Approved Guideline;
- C32-P—Considerations in the Simultaneous Measurement of Blood Gases, Electrolytes and Related Analytes in Whole Blood; Proposed Guideline; and

Sections of another NCCLS document, H11—Procedures for the Collection of Arterial Blood Specimens, have also been included; however, H11 will remain a separate document, because its content is of interest to a broader audience.

THE NCCLS consensus process, which is the mechanism for moving a document through two or more levels of review by the healthcare community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of NCCLS documents. Current editions are listed in the NCCLS Catalog, which is distributed to member organizations, and to nonmembers on request. If your organization is not a member and would like to become one, and to request a copy of the NCCLS Catalog, contact the NCCLS Executive Offices. Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: exoffice@nccls.org; Website: www.nccls.org
Blood Gas and pH Analysis and Related Measurements; Approved Guideline

Volume 21 Number 14

Robert W. Burnett, Ph.D.
Sharon S. Ehrmeyer, Ph.D.
Robert F. Moran, Ph.D., FCCM, FAIC
Antonious L. Van Kessel, B.Sc.RCPT
This publication is protected by copyright. No part of it may be reproduced, stored in a retrieval system, transmitted, or made available in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from NCCLS, except as stated below.

NCCLS hereby grants permission to reproduce limited portions of this publication for use in laboratory procedure manuals at a single site, for interlibrary loan, or for use in educational programs provided that multiple copies of such reproduction shall include the following notice, be distributed without charge, and, in no event, contain more than 20% of the document’s text.

Copies of the current edition may be obtained from NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.

Permission to reproduce or otherwise use the text of this document to an extent that exceeds the exemptions granted here or under the Copyright Law must be obtained from NCCLS by written request. To request such permission, address inquiries to the Executive Director, NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.

Copyright ©2001. The National Committee for Clinical Laboratory Standards.

Suggested Citation

Proposed Guideline
March 2000

Approved Guideline
September 2001

ISBN 1-56238-444-9
ISSN 0273-3099
Committee Membership

Area Committee on Clinical Chemistry and Toxicology

W. Gregory Miller, Ph.D.
Chairholder
Virginia Commonwealth University
Richmond, Virginia

Gary L. Myers, Ph.D.
Vice-Chairholder
Centers for Disease Control and Prevention
Atlanta, Georgia

Paul D’Orazio, Ph.D.
Instrumentation Laboratory
Lexington, Massachusetts

John H. Eckfeldt, M.D., Ph.D.
Fairview-University Medical Center
Minneapolis, Minnesota

Susan A. Evans, Ph.D.
Dade Behring Inc.
Deerfield, Illinois

Neil Greenberg, Ph.D.
Ortho-Clinical Diagnostics
Rochester, New York

Patrick J. Parsons, Ph.D.
New York State Department of Health
Albany, New York

Noel V. Stanton, M.S.
WI State Laboratory of Hygiene
Madison, Wisconsin

Thomas L. Williams, M.D.
Nebraska Methodist Hospital
Omaha, Nebraska

Advisors

George N. Bowers, Jr., M.D.
Hartford Hospital
Hartford, Connecticut

Robert W. Burnett, Ph.D.
Hartford Hospital
Hartford, Connecticut

Mary F. Burritt, Ph.D.
Mayo Clinic
Rochester, Minnesota

Kevin D. Fallon, Ph.D.
Instrumentation Laboratory
Lexington, Massachusetts

Carl C. Garber, Ph.D.
Quest Diagnostics, Incorporated
Teterboro, New Jersey

Harvey W. Kaufman, M.D.
Quest Diagnostics, Incorporated
Teterboro, New Jersey
Advisors (Continued)

Richard R. Miller, Jr.
Dade Behring Inc.
Newark, Delaware

Robert F. Moran, Ph.D., FCCM, FAIC
mvi Sciences
Methuen, Massachusetts

Bette Seamonds, Ph.D.
Mercy Health Laboratory
Swarthmore, Pennsylvania

Working Group on pH and Blood Gas Analysis

Robert W. Burnett, Ph.D.
Hartford Hospital
Hartford, Connecticut

Sharon S. Ehrmeyer, Ph.D.
University of Wisconsin
Madison, Wisconsin

Robert F. Moran, Ph.D., FCCM, FAIC
mvi Sciences
Methuen, Massachusetts

Antonious L. Van Kessel, B.Sc.RCPT
Stanford University Medical Center
Stanford, California

Beth Ann Wise, M.T.(ASCP), M.S.Ed.
NCCLS
Wayne, Pennsylvania
Staff Liaison

Patrice E. Polgar
NCCLS
Wayne, Pennsylvania
Editor

Donna M. Wilhelm
NCCLS
Wayne, Pennsylvania
Assistant Editor
Acknowledgements

In addition to the working group members who coordinated the work on this guideline, the following members of the Subcommittee on pH and Blood Gas, the Subcommittee on Practical Blood Gas Quality Control, and the Working Group on Electrolytes Preanalytical Variables have coauthored one or more of the NCCLS documents consolidated in this document.

Many others have generously contributed their time and efforts as advisors and observers to these subcommittees. Their participation has been extremely important to the satisfactory completion of these documents.

Carolyn Bergkuist, M.S., Medica Corp.

Susan Blonshine, R.R.T., RPFT, TechEd

George S. Cembrowski, M.D., Ph.D., University of Alberta Hospital

Robert L. Chatburn, R.R.T., Rainbow Babies & Children’s Hospital

Torben Falch Christiansen, Radiometer Medical A/S

Jack L. Clausen, M.D., University of California Medical Center

Alan D. Cormier, Ph.D., AC Consulting

Richard A. Durst, Ph.D., Cornell University

John H. Eichhorn, M.D., The University of Mississippi Medical Center

Robert C. Elser, Ph.D., York Hospital

Kevin D. Fallon, Ph.D., Instrumentation Laboratory

Gary A. Graham, Ph.D., DABCC, Ortho-Clinical Diagnostics

James E. Hansen, M.D., UCLA School of Medicine

Domenic R. Misiano, B.S., Massachusetts General Hospital

Salvador F. Sena, Ph.D., DABCC, Danbury Hospital

Jesper D. Wandrup, Ph.D., M.Sc., M.D., Radiometer America, Inc.

Additionally, NCCLS gratefully acknowledges the late Harry Weisberg, M.D., for his valuable contributions to the Subcommittee on pH and Blood Gas.
Active Membership

(as of 1 July 2001)

Sustaining Members

- Abbott Laboratories
- American Association for Clinical Chemistry
- Bayer Corporation
- Beckman Coulter, Inc.
- BD and Company
- bioMérieux, Inc.
- CLMA
- College of American Pathologists
- GlaxoSmithKline
- Nippon Becton Dickinson Co., Ltd.
- Ortho-Clinical Diagnostics, Inc.
- Pfizer Inc
- Roche Diagnostics, Inc.

Professional Members

- AISAR-Associazione Italiana per lo Studio degli
- American Academy of Family Physicians
- American Association for Clinical Chemistry
- American Association for Respiratory Care
- American Chemical Society
- American Medical Technologists
- American Public Health Association
- American Society for Clinical Laboratory Science
- American Society of Hematology
- American Society for Microbiology
- American Society of Parasitologists, Inc.
- American Type Culture Collection, Inc.
- Asociación de Laboratorios de Alta Complejidad
- Asociación Española Primera de Socorros (Uruguay)
- Asociacion Mexicana de Bioquimica Clinica A.C.
- Australasian Association of Clinical Biochemists
- British Society for Antimicrobial Chemotherapy
- CADIME-Camara De Instituciones De Diagnostic Medico
- Canadian Society for Medical Laboratory Science—Société Canadienne de Science de Laboratoire Médical
- Canadian Society of Clinical Chemists
- Clinical Laboratory Management Association
- COLA
- College of American Pathologists
- College of Medical Laboratory Technologists of Ontario
- College of Physicians and Surgeons of Saskatchewan
- Fundación Bioquímica Argentina
- International Association of Medical Laboratory Technologists
- International Council for Standardization in Haematology
- International Federation of Clinical Chemistry
- Italian Society of Clinical Biochemistry
- Japan Society of Clinical Chemistry
- Japanese Committee for Clinical Laboratory Standards
- Joint Commission on Accreditation of Healthcare Organizations
- National Academy of Clinical Biochemistry
- National Society for Histotechnology, Inc.
- Ontario Medical Association Quality Management Program-Laboratory Service
- RCRA Quality Assurance Programs
- PTY Limited
- Sociedade Brasileira de Analises Clinicas
- Sociedade Brasileira de Patologia Clinica
- Sociedad Espanola de Bioquimica Clinica y Patologia Molecular
- Turkish Society of Microbiology

Government Members

- Association of Public Health Laboratories
- Armed Forces Institute of Pathology
- BC Centre for Disease Control
- Centers for Disease Control and Prevention
- Centers for Medicare & Medicaid Services/CLIA Program
- Centers for Medicare & Medicaid Services
- Chinese Committee for Clinical Laboratory Standards
- Commonwealth of Pennsylvania Bureau of Laboratories
- Department of Veterans Affairs
- Deutsches Institut für Normung (DIN)
- FDA Center for Devices and Radiological Health
- FDA Center for Veterinary Medicine
- FDA Division of Anti-Infective Drug Products
- Iowa State Hygienic Laboratory
- Massachusetts Department of Public Health Laboratories
- National Association of Testing Authorities – Australia
- National Center of Infectious and Parasitic Diseases (Bulgaria)
- National Institute of Standards and Technology
- Ohio Department of Health
- Ontario Ministry of Health
- Saskatchewan Health-Provincial Laboratory
- Scientific Institute of Public Health; Belgium Ministry of Social Affairs, Public Health and the Environment
- South African Institute for Medical Research
- Swedish Institute for Infectious Disease Control
- Thailand Department of Medical Sciences

Industry Members

- AB Biodisk
- Abbott Laboratories
- Abbott Laboratories, MediSense Products
- Accumetrics, Inc.
- Agilent Technologies, Inc.
- Ammirari Regulatory Consulting
- Asséssor
- AstraZeneca
- Aventis
- Avocet Medical, Inc.
- Bayer Corporation – Elkhart, IN
| Bayer Corporation – Tarrytown, NY |
| Bayer Corporation – West Haven, CT |
| Bayer Medical Ltd. BD |
| BD Biosciences – San Jose, CA |
| BD Consumer Products |
| BD Diagnostic Systems |
| BD Italia S.P.A. |
| BD VACUTAINER Systems |
| Beckman Coulter, Inc. |
| Beckman Coulter, Inc. Primary Care Diagnostics |
| Beckman Coulter K.K. (Japan) |
| Bio-Development SRL |
| Bio-Inova Life Sciences International |
| Bio-Inova Life Sciences North America |
| BioMedia Laboratories Sdn Bhd |
| bioMérieux, Inc. |
| Biometrology Consultants |
| Bio-Rad Laboratories, Inc. |
| Bio-Rad Laboratories, Inc. - France |
| Biotest AG |
| Bristol-Myers Squibb Company |
| Canadian External Quality Assessment Laboratory |
| Capital Management Consulting, Inc. |
| Checkpoint Development Inc. |
| Clinical Design Group Inc. |
| Clinical Laboratory Improvement Consultants |
| COBE Laboratories, Inc. |
| Community Medical Center (NJ) |
| Control Lab (Brazil) |
| Copan Diagnostics Inc. |
| Cosmetic Ingredient Review |
| Cubist Pharmaceuticals |
| Cytometrics, Inc. |
| Dade Behring Inc. - Deerfield, IL |
| Dade Behring Inc. - Glasgow, DE |
| Dade Behring Inc. - Marburg, Germany |
| Dade Behring Inc. - Sacramento, CA |
| Dade Behring Inc. - San Jose, CA |
| DAKO A/S |
| Diagnostic Products Corporation |
| Eiken Chemical Company, Ltd. |
| Enterprise Analysis Corporation |
| Fort Dodge Animal Health |
| General Hospital Vienna (Austria) Gen-Probe |
| GlaxoSmithKline |
| Greiner Bio-One Inc. |
| Health Systems Concepts, Inc. |
| Helena Laboratories |
| Home Diagnostics, Inc. |
| I-STAT Corporation |
| International Technidyne Corporation |
| Kendall Sherwood-Davis & Geck LAB-Interlink, Inc. |
| Labtest Diagnostica S.A. |
| LifeScan, Inc. (a Johnson & Johnson Company) |
| Lilly Research Laboratories |
| Medical Device Consultants, Inc. Medtronic, Inc. |
| Merck & Company, Inc. mvi Sciences (MA) |
| Nabi Neometrics |
| Nichols Institute Diagnostics (Div. of Quest Diagnostics, Inc.) |
| Norfolk Associates, Inc. Organon Teknika Corporation |
| Ortho-Clinical Diagnostics, Inc. (Raritan, NJ) |
| Ortho-Clinical Diagnostics, Inc. (Rochester, NY) |
| Oxoïd Inc. Pfizer Inc |
| Pharmacia Corporation Premier Inc. |
| Procter & Gamble Pharmaceuticals, Inc. |
| The Product Development Group Quintiles, Inc. |
| Radiometer America, Inc. Radiometer Medical A/S |
| David G. Rhoads Associates, Inc. Roche Diagnostics GmbH |
| Roche Diagnostics, Inc. Roche Laboratories (Div. Hoffmann-La Roche Inc.) |
| The R.W. Johnson Pharmaceutical Research Institute Sarstedt, Inc. |
| SARL Laboratoire Carron (France) Schering Corporation |
| Schleich & Schuell, Inc. Second Opinion |
| Showa Yakuhin Kako Company, Ltd. |
| Streck Laboratories, Inc. SurroMed, Inc. |
| Sysmex Corporation (Japan) Sysmex Corporation (Long Grove, IL) |
| The Toledo Hospital (OH) Trek Diagnostic Systems, Inc. |
| Vetoquinol S.A. Visible Genetics, Inc. Vysis, Inc. |
| Wallac Oy Wyeth-Ayerst |
| Xyletech Systems, Inc. YD Consultant YD Consultants |

Trade Associations

- AdvaMed
- Association of Medical Diagnostic Manufacturers
- Japan Association Clinical Reagents Ind. (Tokyo, Japan)
- Medical Industry Association of Australia

Associate Active Members

- 20th Medical Group (SC)
- 67th CSH Wuerzburg, GE (NY)
- 121st General Hospital (CA)
- Academisch Ziekenhuis-VUB (Belgium)
- Acadiana Medical Laboratories, LTD (LA)
- Adena Regional Medical Center (OH)
- Advocate Laboratories (IL)
- The Aga Khan Hospital & Medical College, Karachi (Pakistan)
- Akershus Central Hospital and AFA (Norway)
- Albany Medical Center Hospital (NY)
- Albemarle Hospital (NC)
- Allegheny General Hospital (PA)
- Allegheny University of the Health Sciences (PA)
- Allina Laboratories (MN)
- Alton Ochsner Medical Foundation (LA)
- American Medical Laboratories (VA)
- Arkansas Department of Health
- ARUP Laboratories (UT)
- ARUP at University Hospital (UT)
- Armed Forces Research Institute of Medical Science (APO, AP)
- Aurora Consolidated Laboratories (WI)
- Bay Medical Center (MI)
- Baystate Medical Center (MA)
- Bbaguas Duzen Laboratories (Turkey)
- Bo Ali Hospital (Iran)
- Bonnyville Health Center (Alberta, Canada)
<table>
<thead>
<tr>
<th>Organization Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broward General Medical Center</td>
<td>(FL)</td>
</tr>
<tr>
<td>Calgary Laboratory Services</td>
<td></td>
</tr>
<tr>
<td>Carilion Consolidated Laboratory (VA)</td>
<td></td>
</tr>
<tr>
<td>Cathay General Hospital (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>CB Healthcare Complex (Sydney, NS, Canada)</td>
<td></td>
</tr>
<tr>
<td>Central Texas Veterans Health Care System</td>
<td></td>
</tr>
<tr>
<td>Centre Hospitalier Regional del la Citadelle (Belgium)</td>
<td></td>
</tr>
<tr>
<td>Centro Diagnostico Italiano (Milano, Italy)</td>
<td></td>
</tr>
<tr>
<td>Champlain Valley Physicians Hospital (NY)</td>
<td></td>
</tr>
<tr>
<td>Chang Gung Memorial Hospital (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital (LA)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital (NE)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital & Clinics (MN)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital King’s Daughters (VA)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital Medical Center (Akron, OH)</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital of Philadelphia (PA)</td>
<td></td>
</tr>
<tr>
<td>Clarian Health–Methodist Hospital (IN)</td>
<td></td>
</tr>
<tr>
<td>Clendo Lab (Puerto Rico)</td>
<td></td>
</tr>
<tr>
<td>CLSI Laboratories (PA)</td>
<td></td>
</tr>
<tr>
<td>Columbus County Hospital (NC)</td>
<td></td>
</tr>
<tr>
<td>Commonwealth of Kentucky</td>
<td></td>
</tr>
<tr>
<td>CompuNet Clinical Laboratories (OH)</td>
<td></td>
</tr>
<tr>
<td>Covance Central Laboratory Services (IN)</td>
<td></td>
</tr>
<tr>
<td>Danville Regional Medical Center (VA)</td>
<td></td>
</tr>
<tr>
<td>Deaconess Hospital (MO)</td>
<td></td>
</tr>
<tr>
<td>Delaware Public Health Laboratory</td>
<td></td>
</tr>
<tr>
<td>Department of Health & Community Services (New Brunswick, Canada)</td>
<td></td>
</tr>
<tr>
<td>Detroit Health Department (MI)</td>
<td></td>
</tr>
<tr>
<td>Diagnostic Laboratory Services, Inc. (HI)</td>
<td></td>
</tr>
<tr>
<td>Duke University Medical Center (NC)</td>
<td></td>
</tr>
<tr>
<td>Durham Regional Hospital (NC)</td>
<td></td>
</tr>
<tr>
<td>Dynacare Laboratories - Eastern Region (Ottawa, ON, Canada)</td>
<td></td>
</tr>
<tr>
<td>Dynacare Memorial Hermann Laboratory Services (TX)</td>
<td></td>
</tr>
<tr>
<td>E.A. Conway Medical Center (LA)</td>
<td></td>
</tr>
<tr>
<td>Eastern Maine Medical Center</td>
<td></td>
</tr>
<tr>
<td>East Side Clinical Laboratory (RI)</td>
<td></td>
</tr>
<tr>
<td>Elyria Memorial Hospital (OH)</td>
<td></td>
</tr>
<tr>
<td>Emory University Hospital (GA)</td>
<td></td>
</tr>
<tr>
<td>Esoterix Center for Infectious Disease (TX)</td>
<td></td>
</tr>
<tr>
<td>Fairfax Hospital (VA)</td>
<td></td>
</tr>
<tr>
<td>Fairview-University Medical Center (MN)</td>
<td></td>
</tr>
<tr>
<td>Florida Hospital East Orlando</td>
<td></td>
</tr>
<tr>
<td>Foothills Hospital (Calgary, AB, Canada)</td>
<td></td>
</tr>
<tr>
<td>Fort St. John General Hospital (Fort St. John, BC, Canada)</td>
<td></td>
</tr>
<tr>
<td>Fox Chase Cancer Center (PA)</td>
<td></td>
</tr>
<tr>
<td>Franklin Square Hospital Center (MD)</td>
<td></td>
</tr>
<tr>
<td>Fresenius Medical Care/Spectra East (NJ)</td>
<td></td>
</tr>
<tr>
<td>Fresno Community Hospital and Medical Center</td>
<td></td>
</tr>
<tr>
<td>Frye Regional Medical Center (NC)</td>
<td></td>
</tr>
<tr>
<td>Gambro Healthcare Laboratory (FL)</td>
<td></td>
</tr>
<tr>
<td>GDS Technology, Inc (IN)</td>
<td></td>
</tr>
<tr>
<td>Geisinger Medical Center (PA)</td>
<td></td>
</tr>
<tr>
<td>Grady Memorial Hospital (GA)</td>
<td></td>
</tr>
<tr>
<td>Guthrie Clinic Laboratories (PA)</td>
<td></td>
</tr>
<tr>
<td>Hahnemann University Hospital (PA)</td>
<td></td>
</tr>
<tr>
<td>Harris Methodist Erath County (TX)</td>
<td></td>
</tr>
<tr>
<td>Hartford Hospital (CT)</td>
<td></td>
</tr>
<tr>
<td>Headwaters Health Authority (Alberta, Canada)</td>
<td></td>
</tr>
<tr>
<td>Health Network Lab (PA)</td>
<td></td>
</tr>
<tr>
<td>Health Sciences Centre (Winnipeg, MB, Canada)</td>
<td></td>
</tr>
<tr>
<td>Heartland Health System (MO)</td>
<td></td>
</tr>
<tr>
<td>Highlands Regional Medical Center (FL)</td>
<td></td>
</tr>
<tr>
<td>Hoag Memorial Presbyterian (CA)</td>
<td></td>
</tr>
<tr>
<td>Holmes Regional Medical Center (FL)</td>
<td></td>
</tr>
<tr>
<td>Holy Spirit Hospital (PA)</td>
<td></td>
</tr>
<tr>
<td>Holzer Medical Center (OH)</td>
<td></td>
</tr>
<tr>
<td>Hospital for Sick Children (Toronto, ON, Canada)</td>
<td></td>
</tr>
<tr>
<td>Hospital Israelita Albert Einstein (Brazil)</td>
<td></td>
</tr>
<tr>
<td>Hospital Sousa Martins (Portugal)</td>
<td></td>
</tr>
<tr>
<td>Hotel Dieu Hospital (Windsor, ON, Canada)</td>
<td></td>
</tr>
<tr>
<td>Huddinge University Hospital (Sweden)</td>
<td></td>
</tr>
<tr>
<td>Hurley Medical Center (MI)</td>
<td></td>
</tr>
<tr>
<td>Indiana State Board of Health</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
</tr>
<tr>
<td>Instituto Scientifico HS. Raffaele (Italy)</td>
<td></td>
</tr>
<tr>
<td>International Health Management</td>
<td></td>
</tr>
<tr>
<td>Associates, Inc. (IL)</td>
<td></td>
</tr>
<tr>
<td>Jackson Memorial Hospital (FL)</td>
<td></td>
</tr>
<tr>
<td>Jersey Shore Medical Center (NJ)</td>
<td></td>
</tr>
<tr>
<td>John F. Kennedy Medical Center (NJ)</td>
<td></td>
</tr>
<tr>
<td>John Peter Smith Hospital (TX)</td>
<td></td>
</tr>
<tr>
<td>John Randolph Hospital (VA)</td>
<td></td>
</tr>
<tr>
<td>Kaiser Permanente CA</td>
<td></td>
</tr>
<tr>
<td>Kaiser Permanente (MD)</td>
<td></td>
</tr>
<tr>
<td>Kantonssipital (Switzerland)</td>
<td></td>
</tr>
<tr>
<td>Kenora-Rainy River Regional Laboratory Program (Ontario, Canada)</td>
<td></td>
</tr>
<tr>
<td>Kern Medical Center (CA)</td>
<td></td>
</tr>
<tr>
<td>King Fahad National Guard Hospital (Saudi Arabia)</td>
<td></td>
</tr>
<tr>
<td>King Khalid National Guard Hospital (Saudi Arabia)</td>
<td></td>
</tr>
<tr>
<td>Kings County Hospital Center (NY)</td>
<td></td>
</tr>
<tr>
<td>Klinični Center (Slovenia)</td>
<td></td>
</tr>
<tr>
<td>LabCorp (NC)</td>
<td></td>
</tr>
<tr>
<td>Laboratories at Bonfils (CO)</td>
<td></td>
</tr>
<tr>
<td>Laboratório Fleury S/C Ltda. (Brazil)</td>
<td></td>
</tr>
<tr>
<td>Laboratory Corporation of America (MO)</td>
<td></td>
</tr>
<tr>
<td>LAC and USC Healthcare Network (CA)</td>
<td></td>
</tr>
<tr>
<td>Lakeland Regional Medical Center (FL)</td>
<td></td>
</tr>
<tr>
<td>Lancaster General Hospital (PA)</td>
<td></td>
</tr>
<tr>
<td>Langley Air Force Base (VA)</td>
<td></td>
</tr>
<tr>
<td>LeBonheur Children’s Medical Center (TN)</td>
<td></td>
</tr>
<tr>
<td>Lewis-Gale Medical Center (VA)</td>
<td></td>
</tr>
<tr>
<td>Libero Instituto Univ. Campus BioMedico (Italy)</td>
<td></td>
</tr>
<tr>
<td>Long Beach Memorial Medical Center (CA)</td>
<td></td>
</tr>
<tr>
<td>Louisiana State University</td>
<td></td>
</tr>
<tr>
<td>Medical Center</td>
<td></td>
</tr>
<tr>
<td>Maccabi Medical Care and Health Fund (Israel)</td>
<td></td>
</tr>
<tr>
<td>Magee Womens Hospital (PA)</td>
<td></td>
</tr>
<tr>
<td>Magnolia Regional Health Center (MS)</td>
<td></td>
</tr>
<tr>
<td>Martin Luther King/Drew Medical Center (CA)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td></td>
</tr>
<tr>
<td>(Microbiology Laboratory)</td>
<td></td>
</tr>
<tr>
<td>Mayo Clinic Scottsdale (AZ)</td>
<td></td>
</tr>
<tr>
<td>MDS Metro Laboratory Services (Burnaby, BC, Canada)</td>
<td></td>
</tr>
<tr>
<td>Medical College of Virginia</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
</tr>
</tbody>
</table>
Medicare/Medicaid Certification, State of North Carolina
Memorial Hospital (CO)
Memorial Medical Center (IL)
Memorial Medical Center (LA)
Mescalero Indian Hospital (NM)
Methodist Hospitals of Memphis (TN)
MetroHealth Medical Center (OH)
Michigan Department of Community Health
Mississippi Baptist Medical Center Monmouth Medical Center (NJ)
Monté Tabor – Centro Italo - Braziliero de Promocao (Brazil)
Montreal Children’s Hospital (Canada)
Montreal General Hospital (Canada)
Morton Plant Mease Health Care (FL)
Mount Sinai Hospital (NY)
MRL Pharmaceutical Services, Inc. (VA)
MRL Reference Laboratory (CA)
National Institutes of Health (MD)
National University Hospital (Singapore)
Naval Surface Warfare Center (IN)
Nebraska Health System
New Britain General Hospital (CT)
New England Fertility Institute (CT)
New England Medical Center Hospital (MA)
New York Hospital Medical Center of Queens
New York State Department of Health
NorDx (ME)
North Carolina Laboratory of Public Health
Northern Indiana Education Foundation
North Mississippi Medical Center
North Shore – Long Island Jewish Health System Laboratories (NY)
Northridge Hospital Medical Center (CA)
Northwestern Memorial Hospital (IL)
Ohio Valley Medical Center (WV)
O.L. Vrouwziekenhuis (Belgium)
Ordre professionnel des technologistes médicaux du Québec
Ospedali Riuniti (Italy)
The Ottawa Hospital (Ottawa, ON, Canada)
Our Lady of Lourdes Hospital (NJ)
Our Lady of the Resurrection Medical Center (IL)
Pathology and Cytology Laboratories, Inc. (KY)
Pathology Associates Laboratories (CA)
The Permanente Medical Group (CA)
Pocono Hospital (PA)
Presbyterian Hospital of Dallas (TX)
Prodia Clinical Laboratory (Indonesia)
Providence Health System (OR)
Providence Seattle Medical Center (WA)
Queen Elizabeth Hospital (Prince Edward Island, Canada)
Queensland Health Pathology Services (Australia)
Quest Diagnostics, Incorporated (AZ)
Quest Diagnostics Incorporated (CA)
Quintiles Laboratories, Ltd. (GA)
Reading Hospital and Medical Center (PA)
Regions Hospital Reid Hospital & Health Care Services (IN)
Research Medical Center (MO)
Rex Healthcare (NC)
Rhode Island Department of Health Laboratories
Riyadh Armed Forces Hospital (Saudi Arabia)
Royal Columbian Hospital (New Westminster, BC, Canada)
Sacred Heart Hospital (MD)
Saint Mary’s Regional Medical Center (NV)
St. Alexius Medical Center (ND)
St. Anthony Hospital (CO)
St. Barnabas Medical Center (NJ)
St. Boniface General Hospital (Winnipeg, Canada)
St. Elizabeth Hospital (NJ)
St-Eustache Hospital (Quebec, Canada)
St. John Hospital and Medical Center (MI)
St. John Hospital and Medical Center (MI)
St. John Regional Hospital (St. John, NB, Canada)
St. Joseph Hospital (NE)
St. Joseph’s Hospital – Marshfield Clinic (WI)
St. Joseph’s Medical Center (CA)
St. Luke’s Regional Medical Center (IA)
St. Mark’s Hospital (UT)
St. Mary Medical Center (IN)
St. Mary of the Plains Hospital (TX)
St. Mary’s Hospital & Medical Center (CO)
St. Paul’s Hospital (Vancouver, BC, Montreal)
St. Vincent Medical Center (CA)
Ste. Justine Hospital (Montreal, PQ, Canada)
Salina Regional Health Center (KS)
San Francisco General Hospital (CA)
Santa Cabrini Hospital (Montreal, PQ Canada)
Santa Clara Valley Medical Center (CA)
Seoul Nat’l University Hospital (Korea)
Shanghai Center for the Clinical Laboratory (China)
South Bend Medical Foundation (IN)
Southern California Permanente Medical Group
South Western Area Pathology Service (Australia)
Speciality Laboratories, Inc. (CA)
Stanford Hospital and Clinics (CA)
State of Washington Department of Health
Stormont-Vail Regional Medical Center (KS)
Sun Health-Boswell Hospital (AZ)
Sunrise Hospital and Medical Center (NV)
T.A. Sourasky Medical Center (Israel)
Temple University Hospital (PA)
Tenet Odessa Regional Hospital (TX)
The Toledo Hospital (OH)
Touro Infirmary (LA)
Trident Regional Medical Center (SC)
Tripler Army Medical Center (HI)
Truman Medical Center (MO)
UCSF Medical Center (CA)
UNC Hospitals (NC)
University Hospital (Gent) (Belgium)
University Hospital (TX)
The University Hospitals (OK)
The University of Alabama-Birmingham Hospital
The University of Alberta Hospitals (Canada)
The University of Colorado Health Science Center
The University of Chicago Hospitals (IL)
The University of Florida
University of Illinois at Chicago
University of the Ryukyus (Japan)
University of Texas M.D. Anderson Cancer Center
University of Virginia Medical Center
UPMC Bedford Memorial (PA)
UZ-KUL Medical Center (Belgium)
VA (Dayton) Medical Center (OH)
VA (Denver) Medical Center (CO)
VA (Kansas City) Medical Center (MO)

VA (Martinez) Medical Center
VA (San Diego) Medical Center (CA)
VA (Tuskegee) Medical Center (AL)
VA Outpatient Clinic (OH)
Vejle Hospital (Denmark)
Virginia Department of Health
Viridae Clinical Sciences, Inc. (Vancouver, BC, Canada)
Washoe Medical Center Laboratory (NV)
Watson Clinic (FL)

University of Illinois at Chicago
University of the Ryukyus (Japan)
University of Texas M.D. Anderson Cancer Center
University of Virginia Medical Center
UPMC Bedford Memorial (PA)
UZ-KUL Medical Center (Belgium)
VA (Dayton) Medical Center (OH)
VA (Denver) Medical Center (CO)
VA (Kansas City) Medical Center (MO)

VA (Martinez) Medical Center
VA (San Diego) Medical Center (CA)
VA (Tuskegee) Medical Center (AL)
VA Outpatient Clinic (OH)
Vejle Hospital (Denmark)
Virginia Department of Health
Viridae Clinical Sciences, Inc. (Vancouver, BC, Canada)
Washoe Medical Center Laboratory (NV)
Watson Clinic (FL)

OFFICERS

F. Alan Andersen, Ph.D., President
Donna M. Meyer, Ph.D., President Elect
Emil Voelkert, Ph.D., Secretary
Gerald A. Hoeltge, M.D., Treasurer
William F. Koch, Ph.D., Immediate Past President
National Institute of Standards and Technology
John V. Bergen, Ph.D., Executive Director

Susan Blonshine, RRT, RPFT, FAARC TechEd
Wayne Brinster BD
Kurt H. Davis, FCSMLS, CAE Canadian Society for Medical Laboratory Science
Robert L. Habig, Ph.D. Ampersand Medical
Thomas L. Hearn, Ph.D. Centers for Disease Control and Prevention
Carolyn D. Jones, J.D., M.P.H. AdvaMed

Tadashi Kawai, M.D., Ph.D. International Clinical Pathology Center
J. Stephen Kroger, M.D., FACP COLA
Gary L. Myers, Ph.D. Centers for Disease Control and Prevention
Barbara G. Painter, Ph.D. Bayer Corporation
Ann M. Willey, Ph.D., J.D. New York State Department of Health
Judith A. Yost, M.A., M.T.(ASCP) Centers for Medicare & Medicaid Services

BOARD OF DIRECTORS

This is a preview of "CLSI C46-A". Click here to purchase the full version from the ANSI store.
Contents

Abstract ... i

Committee Membership... v

Active Membership ... ix

Foreword .. xvii

1 Introduction .. 1

2 Scope ... 1

3 Concepts and Definitions ... 1
 3.1 pH... 1
 3.2 Partial Pressure of CO₂ and O₂.. 2
 3.3 Apparent pK of CO₂ in Plasma (pK′).. 3
 3.4 Concentration of Total CO₂ in Plasma Compartment of Whole Blood 3
 3.5 Bicarbonate Concentration.. 3
 3.6 Apparent Buffer Value of Nonbicarbonate Buffers in Extracellular Fluid (β_{ecf}) 4
 3.7 Base Excess of Extracellular Fluid [BE_{ecf}]... 4
 3.8 Base Excess of Blood [BE(B)].. 5
 3.9 Concentration of Total Hemoglobin (ctHb)... 6
 3.10 Hemoglobin “Saturation” and Fractional Derivatives of Hemoglobin 6
 3.11 Oxygen Capacity of Hemoglobin in Blood (BO₂) .. 8
 3.12 Oxygen Content/(Concentration of Total Oxygen) of Blood 8
 3.13 P_{50}... 8

4 Preanalytical Considerations 9
 4.1 Patient Preparation .. 9
 4.2 Sample Device and Collection Procedures ... 10
 4.3 Patient Condition .. 13
 4.4 Specimen Handling... 15

5 General Analytical Interferences... 16
 5.1 Hematocrit ... 16
 5.2 Errors in Thermal Control... 17
 5.3 Hemoglobin F (Fetal Hemoglobin)... 17
 5.4 Blood Substitutes .. 17
 5.5 Abnormal Hemoglobins.. 17

6 Blood Gas Analyzer Calibration ... 17
 6.1 Calibration .. 17
 6.2 Internal Electronic Barometer... 17

7 Blood Gas Quality Control.. 18
 7.1 Materials Used for Quality Control .. 18
Contents (Continued)

References .. 20

Appendix. Performance Characteristics to be Specified by the Manufacturer............................... 26

Summary of Comments and Working Group Responses ... 28

Related NCCLS Publications ... 31
Foreword

This guideline is the result of the decision of the Area Committee on Clinical Chemistry and Toxicology to combine and update four approved-level documents, one proposed-level document, and one unpublished document. The intent is for this document to serve more effectively the three major constituents (professions, government, and industry) of NCCLS. The challenge for the working group was to retain the essential elements of each document while making the content current and increasing its relevance for the users.

This guideline consolidates and updates:

- C12-A—Definitions of Quantities and Conventions Related to Blood pH and Gas Analysis; Approved Standard;
- C21-A—Performance Characteristics for Devices Measuring pO₂ and pCO₂ in Blood Samples; Approved Standard;
- C25-A—Fractional Oxyhemoglobin, Oxygen Content and Saturation, and Related Quantities in Blood: Terminology, Measurement and Reporting; Approved Guideline;
- C27-A—Blood Gas Pre-Analytical Considerations: Specimen Collection and Controls; Approved Guideline;
- C32-P—Considerations in the Simultaneous Measurement of Blood Gases, Electrolytes and Related Analytes in Whole Blood; Proposed Guideline; and
- C33—Practical Blood Gas and pH Quality Control (Unpublished).

Sections of H11—Procedures for the Collection of Arterial Blood Specimens, also have been included; however, H11 will remain a separate document, because its content includes greater detail and is of interest to a broader audience.

In the process of consolidating and updating, several factors were considered. Because regulations exist regarding record keeping, quality control, calibration, and other operational practices, it is no longer necessary to include or explain some aspects of these in this guideline. In addition, some of the originally discussed quantities are no longer considered appropriate, and these have been omitted. When C21 was developed, whole blood tonometry was considered the reference for assessing quality. This guideline discusses tonometry as one means to assess quality, but omits the detailed instructions that are more appropriate for manufacturers’ manuals. The reader is referred to the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) document on whole blood tonometry.1 C25 was developed before many of the principles and applications of multicomponent spectrophotometry were readily available in a single source. The educational and descriptive text and figures once necessary are now included in manufacturers’ information. The unique preanalytical, analytical, and postanalytical considerations and how this information relates to the patient’s sample are included. C32 includes considerations when measuring electrolytes simultaneously with blood gases. The necessary elements for these measurements are in this guideline.
Foreword (Continued)

With this consolidation and update, the working group believes the guideline is more laboratory-focused. Yet, the essential information found in the original six documents and important to manufacturers and government agencies remains.

Standard Precautions

Because it is often impossible to know what might be infectious, all human blood specimens are to be treated as infectious and handled according to “standard precautions.” Standard precautions are new guidelines that combine the major features of “universal precautions and body substance isolation” practices. Standard precautions cover the transmission of any pathogen and thus are more comprehensive than universal precautions which are intended to apply only to transmission of blood-borne pathogens. Standard precaution and universal precaution guidelines are available from the U.S. Centers for Disease Control and Prevention (Guideline for Isolation Precautions in Hospitals. Infection Control and Hospital Epidemiology. CDC. 1996;Vol 17;1:53-80.), [MMWR 1987;36(suppl 2S):2S-18S] and (MMWR 1988;37:377-382, 387-388). For specific precautions for preventing the laboratory transmission of blood-borne infection from laboratory instruments and materials; and recommendations for the management of blood-borne exposure, refer to NCCLS document M29—Protection of Laboratory Workers from Instrument Biohazards and Infectious Disease Transmitted by Blood, Body Fluids, and Tissue.

Key Words

Blood gas, carbon dioxide, fractional oxyhemoglobin, hemoglobin-oxygen saturation, oxygen content, pH
Blood Gas and pH Analysis and Related Measurements; Approved Guideline

1 Introduction

There are several aspects of blood pH and gas analysis that are unique among clinical laboratory determinations, and, at the same time, no other test results have more immediate impact on patient care. This area of laboratory medicine also has the reputation of being somewhat confusing and difficult to understand, partly because of the many different measured and derived quantities that have been used over the years. This document provides clear definitions of the several quantities in current use and includes information on appropriate specimen collection, preanalytical variables, and quality control. There is also a section containing a list of performance characteristics pertinent to blood gas analyzers which can be used by manufacturers to provide operational specifications in a uniform way, to facilitate comparison by potential customers of different instruments.

This guideline is primarily intended for laboratory technologists, respiratory and critical care practitioners, and others responsible for obtaining and analyzing blood for pH, oxygen, carbon dioxide, and related measurements. It will also be useful to manufacturers and those responsible for teaching this subject to medical students, residents, and allied health personnel.

2 Scope

This guideline addresses blood gas, pH, and related measurements (e.g., fractional oxyhemoglobin, oxygen content, hemoglobin-oxygen saturation, and selected electrolytes as measured in whole blood).

This document defines terminology and discusses performance characteristics as well as preanalytical variables, analytical considerations, and quality control issues.

3 Concepts and Definitions

This section contains terms and definitions in standard NCCLS format (NRSCL8—Terminology and Definitions for Use in NCCLS Documents) integrated with related information and concepts. The formal definitions are accompanied by supplementary information necessary to understand and apply the concepts of blood gases and related quantities. The definitions and supplemental information contained in this section have been developed with the intent of providing maximum clarity for the typical reader of this document. This results in some definitions differing from the full definition as found in NRSCL8. While the definitions reflect the essence of those contained in the NCCLS standard on terminology, they are not, in all cases, word-for-word.

The reader is referred to the definitions and explanatory notes found in NRSCL8—Terminology and Definitions for Use in NCCLS Documents, both for related terms and definitions not contained in this document and for a more precise understanding of a term’s concept.

3.1 pH

\[\text{pH, } n - \text{ the symbol for the negative (decadic) logarithm of the relative molal hydrogen ion activity (} \alpha H^+ \text{),} \]

which is a measure of the effective concentration of hydrogen ions in solution; \textbf{NOTE:} Historically, pH arose as a symbol for the “power of hydrogen.”

\[\text{pH} = - \log \alpha H^+ \] (1)