This guideline provides definitions, principles, and approaches to laboratory quality control design, implementation, and assessment.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions

Curtis A. Parvin, PhD
Nils B. Person, PhD, FACB
Nikola Baumann, PhD
Lili Duan, PhD
A. Paul Durham
Valerio M. Genta, MD
Jeremie Gras, MD
Greg Miller, PhD
Megan E. Sawchuk, MT(ASCP)

Abstract

Clinical and Laboratory Standards Institute guideline C24—Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions discusses the principles of statistical QC, with particular attention to the planning of a QC strategy and the application of statistical QC in a medical laboratory. Although these principles are of interest to manufacturers, this guideline is intended for use by medical laboratory personnel in order to provide a QC strategy that uses control materials that are external to a reagent kit, instrument, or measuring system and that are intended to simulate the measurement of a patient specimen.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Committee Membership

Consensus Council

Carl D. Mottram, RRT, RPFT, FAARC
Chairholder
Mayo Clinic
USA

J. Rex Astles, PhD, FACB, DABCC
Centers for Disease Control and Prevention
USA

Lucia M. Berte, MA, MT(ASCP)SBB, DLM; CQA(ASQ)CMQ/OE
Labs Made Better!
USA

Karen W. Dyer, MT(ASCP), DLM
Centers for Medicare & Medicaid Services
USA

Dennis J. Ernst, MT(ASCP), NCPT(NCCT)
Center for Phlebotomy Education
USA

Thomas R. Fritsche, MD, PhD, FCAP, FIDSA
Marshfield Clinic
USA

Mary Lou Gantzer, PhD, FACB
BioCore Diagnostics
USA

Lorale J. Langman, PhD
Mayo Clinic
USA

Joseph Passarelli
Roche Diagnostics Corporation
USA

James F. Pierson-Perry
Siemens Healthcare Diagnostics Inc.
USA

Andrew Quintenz
Bio-Rad Laboratories, Inc.
USA

Robert Rej, PhD
New York State Department of Health – Wadsworth Center
USA

Zivana Tezak, PhD
FDA Center for Devices and Radiological Health
USA

Document Development Committee on Statistical QC for Clinical Chemistry

Curtis A. Parvin, PhD
Chairholder
Bio-Rad Laboratories, Inc.
USA

Nils B. Person, PhD, FACB
Vice-Chairholder
Siemens Healthcare Diagnostics, Inc.
USA

Lili Duan, PhD
FDA Center for Devices and Radiological Health
USA

Jeremie Gras, MD
Clinique St. Luc
Belgium

Megan E. Sawchuk, MT(ASCP)
Centers for Disease Control and Prevention
USA

Greg Miller, PhD
Virginia Commonwealth University Health System
USA

Nikola Baumann, PhD
Mayo Clinic
USA

Staff

Clinical and Laboratory Standards Institute
USA

Joanne P. Christopher, MA, ELS
Editor

Luann Ochs, MS
Project Manager

Megan L. Tertel, MA, ELS
Editorial Manager

Laura Martin
Editor

Michael A. Russell, MA
Editor
Acknowledgment for the Expert Panel on Clinical Chemistry and Toxicology

CLSI, the Consensus Council, and the Document Development Committee on Statistical QC for Clinical Chemistry gratefully acknowledge the Expert Panel on Clinical Chemistry and Toxicology for serving as technical advisors and subject matter experts during the development of this guideline.

Expert Panel on Clinical Chemistry and Toxicology

Johanna Camara, PhD
Chairholder
National Institute of Standards and Technology
USA

Lili Duan, PhD
FDA Center for Devices and Radiological Health
USA

Kamisha Johnson-Davis, PhD, DABCC, FACB
University of Utah and ARUP Laboratories
USA

Godwin Ogbonna, PhD
Ortho-Clinical Diagnostics, Inc.
USA

Lorin M. Bachmann, PhD, DABCC
Vice-Chairholder
Virginia Commonwealth University Health System
USA

Curtis Oleschuk, PhD, FCACB
Diagnostic Services of Manitoba
Canada

Karl De Vore
Bio-Rad Laboratories, Inc.
USA

Gregory T. Maine, PhD, FACB
Abbott
USA

David B. Sacks, MB, ChB, FRCP
National Institutes of Health
USA

A. Paul Durham
APD Consulting
USA

Acknowledgment

CLSI, the Consensus Council, and the Document Development Committee on Statistical QC for Clinical Chemistry gratefully acknowledge the following volunteers for their important contributions to the development of this guideline:

A. Paul Durham
APD Consulting
USA

Valerio M. Genta, MD
Sentara Virginia Beach General Hospital
USA
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii
Chapter 1: Introduction ... 1
1.1 Scope ... 1
1.2 Background ... 2
1.3 Standard Precautions ... 2
1.4 Terminology .. 3
Chapter 2: Path of Workflow .. 9
Chapter 3: Purpose of Statistical Quality Control ... 11
3.1 Quality Control and Patient Risk .. 11
3.2 Quality Requirements ... 12
3.3 Method Performance Relative to Quality Requirements .. 14
3.4 Types of Out-of-Control Conditions ... 17
3.5 Quality Control Rules ... 18
Chapter 4: Assessing Quality Control Performance ... 19
4.1 False Rejection Rate ... 19
4.2 Detection of Out-of-Control Conditions ... 20
Chapter 5: Planning a Statistical Quality Control Strategy ... 23
5.1 Define the Quality Requirements .. 23
5.2 Select Control Materials ... 24
5.3 Determine Target Values and Standard Deviations for Quality Control Materials
That Represent Stable Analytical Performance .. 27
5.4 Set Goals for Quality Control Performance .. 31
5.5 Select a Quality Control Strategy Based on Performance Goals 32
5.6 Design a Quality Control Strategy for Multiple Instruments 38
Chapter 6: Recovering From an Out-of-Control Condition .. 39
6.1 Responding to an Out-of-Control Quality Control Event ... 39
6.2 Responding to an Out-of-Control Condition .. 39
6.3 Identifying and Correcting Reported Erroneous Patient Results 39
Chapter 7: Ongoing Assessment of Quality Control Programs .. 41
7.1 Assessment of the Internal Quality Control Program ... 41
7.2 Using Interlaboratory Quality Control to Assess a Quality Control Program 41
Chapter 8: Worked Examples ... 43
8.1 Define the Quality Requirement ... 43
8.2 Select Quality Control Materials .. 43
8.3 Determine Target Values and Standard Deviations .. 43
8.4 Select Quality Control Strategy ... 44
Chapter 9: Conclusion ... 46
Chapter 10: Supplemental Information ... 46
References ... 47
Contents (Continued)

Appendix A. Levey-Jennings Chart ... 50

Appendix B. Medical Laboratory Quality Control Shift and Trend Troubleshooting Checklist ... 55

The Quality Management System Approach ... 60

Related CLSI Reference Materials ... 61
Foreword

The medical laboratory community has used C24, now in its fourth edition, for more than 20 years. Today, statistical QC is still critically important to ensure the quality of the results of any laboratory measurement procedure. The almost universal applicability of statistical QC to quantitative measurement procedures provides laboratories with an essential quality management tool that can be used to monitor the effects of many instrument, reagent, environment, and operator variables on the outcome of a measurement process.

The laboratory director is generally responsible for the laboratory QC program. The definition of quality requirements for the tests being performed is particularly important because laboratory managers, supervisors, scientists, and quality specialists often use those quality requirements to select and validate appropriate measurement and control procedures. C24’s approach provides medical laboratory scientists with practical guidance on how to satisfy recommendations by authorities and/or accreditation organizations.¹

The concepts, approaches, and practices discussed in this guideline are interdependent and all should be carefully studied and considered when developing the specific QC strategy for any measurement procedure, system, or laboratory. C24 highlights the technical issues that need a careful scientific approach to designing, implementing, and assessing QC strategies in order for laboratories to achieve the quality requirements needed by the physicians and patients they serve.

Overview of Changes

This guideline replaces the previous edition of the approved guideline, C24-A3, published in 2006. The fourth edition maintains the focus on principles and approaches to laboratory QC design, implementation, and assessment that reflect the realities of the modern medical laboratory and its role within the health care enterprise. Several changes were made in this edition, including:

- The alignment of principles and definitions to be consistent with and to supplement the general patient risk model described in CLSI document EP23™²
- The introduction of additional performance measures useful for evaluating the performance characteristics of a QC strategy (see Chapter 5)
- Expanded guidance on setting target values and SDs for QC materials (see Subchapter 5.3)
- A greater focus on QC frequency and QC schedules as a critical part of a QC strategy (see Subchapter 5.5)
- A substantive chapter on recovering from an out-of-control condition (see Chapter 6), including sections on:
 - Responding to an out-of-control QC event
 - Responding to an out-of-control condition
 - Identifying and correcting reported erroneous patient results

NOTE: The content of this guideline is supported by the CLSI consensus process, and does not necessarily reflect the views of any single individual or organization.

Key Words

Patient risk, quality control, quality control plan, quality control rules, quality control strategy, quality requirements, Sigma metric
Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions

Chapter 1: Introduction

This chapter includes:

- Guideline’s scope and applicable exclusions
- Background information pertinent to the guideline’s content
- Standard precautions information
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the guideline
- Abbreviations and acronyms used in the guideline

1.1 Scope

This guideline explains the purpose of statistical QC for quantitative measurement procedures, describes an approach for planning a QC strategy for a particular measurement procedure, describes the use of QC material and QC data, and provides examples that demonstrate a practical QC planning process for medical laboratories.

The recommendations for establishing and maintaining a statistical QC strategy are applicable to quantitative laboratory measurement procedures in all fields of laboratory medicine for which stable control materials can be measured in the same manner as patient specimens. The intended users of this guideline include those responsible for designing, implementing, and using QC, ie, medical laboratory scientists.

This guideline does not:

- Describe built-in control mechanisms that might be part of a measuring system, or qualitative or semiquantitative measurement procedures.
- Define specific QC strategies that are appropriate for an individual device or technology.
- Describe alternatives to statistical process control, eg, real-time patient-based QC.
- Consider specific legal requirements that may impose different philosophies or procedures on QC practices (eg, a specific approach for defining quality requirements, specific values for quality requirements, a specific procedure for determining target values for control materials, or a frequency and number of QC measurements) defined by government regulation in a specific country or region.

Additionally, there are types of random errors that may affect measurements performed on individual specimens, rather than a whole group of specimens, and those errors are not detected by a statistical QC