This document provides guidance to the clinical laboratorian for the reduction of interlaboratory variance and the evaluation of interferences, assay performance, and other pertinent characteristics of clinical assays. This guideline emphasizes particular areas related to assay development and presents a standardized approach for method verification that is specific to mass spectrometry technology.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Process document.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document C62-A—Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline provides guidance for the development and verification of liquid chromatography-mass spectrometry (LC-MS) methods in the clinical laboratory. The document is intended to reduce interlaboratory variance for clinical assays through guidance for evaluating interferences, assay performance, and other pertinent characteristics. It emphasizes particular areas related to assay development and presents a standardized approach for method verification that is specific to mass spectrometry (MS) technology. This document is intended for laboratorians responsible for development and verification of MS-based assays, physicians who may use these assays for patient care decisions, external quality assessment programs, and manufacturers of MS instrumentation and reagent kits designed to be paired with a particular mass spectrometer. This document is limited to discussion of LC-MS and is focused on the steps for development of a method, eg, whether the analyte is a drug, hormone, protein, or peptide.

Committee Membership

Consensus Committee on Clinical Chemistry and Toxicology

David G. Grenache, PhD, DABCC, FACB
Chairholder
ARUP at University Hospital
USA

Loralie J. Langman, PhD
Vice-Chairholder
Mayo Clinic
USA

Julianne Cook Botelho, PhD
Centers for Disease Control and Prevention
USA

Johanna Camara, PhD
National Institute of Standards and Technology
USA

Yung W. Chan, MT(ASCP)
FDA Center for Devices and Radiological Health
USA

Ann M. Gronowski, PhD
Washington University School of Medicine
USA

Gregory T. Maine, PhD, FACB
Abbott
USA

Joseph Passarelli
Roche Diagnostics, Inc.
USA

T. Andrew Quintenz
Bio-Rad Laboratories, Inc.
USA

Document Development Committee on Liquid Chromatography/Mass Spectrometry Methods

William Clarke, PhD, MBA, DABCC
Chairholder
Johns Hopkins Medical Institutions
USA

Ross J. Molinaro, PhD, MLS(ASCP)C, DABCC, FACB
Vice-Chairholder
Siemens Healthcare Diagnostics, Inc.
USA

Lorin M. Bachmann, PhD, DABCC
Virginia Commonwealth University
USA

Julianne Cook Botelho, PhD
Centers for Disease Control and Prevention
USA

Zhimin Cao, MD, PhD, DABCC
New York State Department of Health
USA

Russell P. Grant, PhD
LabCorp
USA

Andrew N. Hoofnagle, MD, PhD
University of Washington Medical Center
USA

Vathany Kulasingam, PhD, FCACB
University Health Network
Canada

Donald S. Mason, MS
Waters Corporation
USA

Staff

Clinical and Laboratory Standards Institute
USA

Senior Vice President – Operations

Ron S. Quicho, MS
Staff Liaison

Megan L. Tertel, MA
Editorial Manager

Joanne P. Christopher, MA
Editor

Patrice E. Polgar
Editor
Acknowledgment

CLSI, the Consensus Committee on Clinical Chemistry and Toxicology and the Document Development Committee on Liquid Chromatography/Mass Spectrometry Methods gratefully acknowledge the following volunteers for their important contributions to the development of this document:

Deborah French, PhD, DABCC
University of California San Francisco
USA

Seema Garg, MS, MBA
Eurofins Medinet
USA

John M. Gawoski, MD
Lahey Hospital & Medical Center
USA

Bagyalakshmi Iyer, PhD
Pennsylvania Department of Health
USA

Brian Rappold
Essential Testing, LLC
USA

Danyel H. Tacker, PhD, DABCC
West Virginia University Hospitals
USA

Steven M. Truscott, PhD, DABCC
Beaumont Health System
USA

Chunli Yu, MD, FACMG
Mount Sinai Genetic Testing Laboratory
USA

Yusheng Zhu, PhD, DABCC, FACB
Medical University Hospital Authority
USA
Contents

Abstract .. i

Committee Membership ... iii

Foreword .. vii

1 Scope ... 1

2 Standard Precautions .. 1

3 Terminology .. 2

 3.1 A Note on Terminology .. 2

 3.2 Definitions .. 2

 3.3 Abbreviations and Acronyms .. 6

4 Instrumentation .. 7

 4.1 High-Performance Liquid Chromatography and Ultra-High Performance Liquid Chromatography ... 7

 4.2 Ion Sources for Mass Spectrometry ... 8

 4.3 Mass Analyzers: Quadrupole, Time-of-Flight, and Ion Traps .. 10

 4.4 Instrumentation Performance Parameters .. 12

5 Preexamination Considerations ... 16

 5.1 Analyte of Interest .. 16

 5.2 Internal Standard Selection .. 19

 5.3 Reagents and Sample Preparation .. 21

6 Assay Development .. 22

 6.1 Ion Transitions ... 23

 6.2 High-Performance Liquid Chromatography Stationary Phase .. 26

 6.3 High-Performance Liquid Chromatography Mobile Phase .. 26

 6.4 Examination Variables .. 28

 6.5 Sources of Error .. 35

 6.6 Assay Calibration ... 37

 6.7 Preverification ... 43

7 Assay Verification ... 46

 7.1 Limit of Detection and Lower Limit of the Measuring Interval .. 47

 7.2 Linearity and Dilution .. 47

 7.3 Imprecision ... 49

 7.4 Assay Interferences .. 49

 7.5 Trueness ... 50

8 Quality Assurance and Quality Control of Liquid Chromatography-Mass Spectrometry Assays .. 52

 8.1 Selection of Quality Control Materials ... 52

 8.2 Quality Control Concentration and Frequency ... 54

 8.3 Additional Quality Assurance/Quality Control Samples for Liquid Chromatography-Mass Spectrometry Methods ... 54

 8.4 Evaluation of Quality Control Acceptability .. 55

 8.5 Corrective Action for Failed Quality Control ... 55

 8.6 Quality Control Considerations for Multicomponent or Multiplexed Assays .. 55

 8.7 Periodic Quality Assurance Procedures ... 56
Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Additional Quality Assurance Aspects</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>Postimplementation Monitoring</td>
<td>58</td>
</tr>
<tr>
<td>9.1</td>
<td>Proficiency Testing</td>
<td>59</td>
</tr>
<tr>
<td>9.2</td>
<td>System Performance Monitoring</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>The Quality Management System Approach</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Related CLSI Reference Materials</td>
<td>70</td>
</tr>
</tbody>
</table>
Foreword

The importance of mass spectrometry (MS) in the clinical laboratory is increasing, and this CLSI document was developed in response to the need for increased robustness and harmonization of liquid chromatography-mass spectrometry (LC-MS) methods. Vendors of in vitro diagnostic devices often wait until the clinical utility of a particular assay is established and widely accepted before beginning development of a commercial assay. As a result, improvements in patient care can be delayed until a commercial assay is available. These delays can be significant if there are difficulties in the development of the assay. For laboratories with the capability to develop and implement laboratory-developed tests, MS provides an attractive alternative solution based on the ability to rapidly develop an analytically robust assay with excellent analytical sensitivity and specificity. In some cases, it offers an attractive alternative to commercially available assays that have already been developed, but do not offer acceptable performance in the current clinical context. LC-MS technology shows promise as a tool to rapidly develop clinical assays for emerging biomarkers coming from research in proteomics. Advances in instrumentation are likely to enable application of LC-MS technology in routine clinical diagnostic testing.

Despite the significant advantages that can be gained from incorporating MS into the clinical laboratory, considerable challenges exist. Among these is the fact that for some assays, significant laboratory-to-laboratory variability for the same analyte has been observed. There is currently limited assay standardization for MS-based methods, and much of the assay variability can be attributed to the lack of commercially available calibrators; that is, each clinical laboratory must formulate its own calibrators. For example, some sites may use powdered or commercially lyophilized material, some may use organic solvent solutions, and some may even use formulations obtained from their institution’s pharmacy to make calibrators. Moreover, the preparation of the calibrators also varies from using solutions made in buffer, from using analyte-free serum or plasma as the matrix, or from using patient specimen remnants as the calibrator matrix—a problem for endogenous analytes. Differences in chromatographic methods from site to site lead to variable matrix effects during analysis. In addition, many laboratories verify their assays using various protocols in accordance with different regulatory or industry standards. This document addresses these issues by providing guidance for the development and verification of LC-MS methods in the clinical laboratory.

This document outlines many important elements for successful implementation of LC-MS technology for clinical analyses. The basic instrument components needed both for chromatography and MS are discussed, along with instrument parameters that must be optimized for development of robust LC-MS methods. In addition, the document contains a discussion of preexamination considerations that must be addressed during the method development process. Various elements of method development are summarized, along with best practice recommendations for addressing those elements during the process. Guidance is provided for verification of an LC-MS method, including a recommendation for preverification evaluation before full method verification. Finally, the document provides guidance for QA, including assay QC and postimplementation monitoring.

Key Words

Chromatography, liquid chromatography-mass spectrometry, mass spectrometry, method verification, postimplementation monitoring, quality control
Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline

1 Scope

This document provides an introduction to, and guidance for, method development, verification, and postimplementation monitoring of quantitative clinical applications using liquid chromatography-mass spectrometry (LC-MS). While LC-MS may also be used for qualitative analyses, the focus of this document is on the use of this technology for quantification of clinical analytes. In addition, while there are commercial and research methods that allow direct injection without chromatography for rapid analyses, this guideline is exclusively focused on liquid chromatography (LC) coupled to mass spectrometry (MS). The purpose of this guideline is to educate both clinical LC-MS practitioners and health care providers (including physicians) who may use these assays for patient care decisions on the benefits and limitations of LC-MS methods used in the clinical laboratory, as well as provide a practical guide for the development and implementation of LC-MS–based clinical applications. It is intended to serve not only as a companion to CLSI document C50, which serves as excellent general guidance for MS in the clinical laboratory, but also to provide an enhanced focus on methods, best practices, and instrumentation related to LC-MS, which is emerging as the most common approach to clinical analyses. This document is also intended to be a resource for instrument manufacturers, manufacturers of LC-MS reagents, regulatory agencies, and educators, as well as individuals responsible for developing laboratory standards and policy.

A description of all current clinical applications of LC-MS, as well as all of the pertinent information regarding development and verification of these methods, is beyond the scope of this document. As such, this guideline directs the reader to appropriate existing resources wherever possible. In providing guidance for LC-MS method development, verification, and implementation, this document focuses on:

- Important features of LC-MS instrumentation
- Preexamination factors that can impact assay performance and utility
- Assay calibration
- Analytical variables important in method development
- Assay verification
- QA and QC
- Postimplementation monitoring of clinical methods

2 Standard Precautions

Because it is often impossible to know what isolates or specimens might be infectious, all patient and laboratory specimens are treated as infectious and handled according to “standard precautions.” Standard precautions are guidelines that combine the major features of “universal precautions and body substance isolation” practices. Standard precautions cover the transmission of all known infectious agents and thus are more comprehensive than universal precautions, which are intended to apply only to transmission of bloodborne pathogens. The Centers for Disease Control and Prevention (CDC) address this topic in published guidelines that address the daily operations of diagnostic medicine in human and animal medicine while encouraging a culture of safety in the laboratory. For specific precautions for preventing the laboratory transmission of all known infectious agents from laboratory instruments and materials and for recommendations for the management of exposure to all known infectious diseases, refer to CLSI document M29.