This document provides guidance for evaluating the commutability of processed samples by determining if they behave differently than unprocessed patient samples when two quantitative measurement procedures are compared.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Evaluation of Commutability of Processed Samples; Approved Guideline—Third Edition

Volume 34 Number 11

Karl De Vore
Yashpal Agrawal, MD, PhD
Todd D. Alspach, MT(ASCP), MOS
Jeffrey R. Budd, PhD
Ramon A. Durazo-Arvizu, PhD
John H. Eckfeldt, MD, PhD
Kathie Goodwin, RAC, MBA, MT(ASCP)BB
Abdel-Baset Halim, PharmD, PhD, DABCC
Thomas A. Long
W. Gregory Miller, PhD
Nisar Pampori, PhD
Justin Thomas
Jeffrey E. Vaks, PhD
Hubert W. Vesper, PhD

Abstract

Clinical and Laboratory Standards Institute document EP14-A3—*Evaluation of Commutability of Processed Samples; Approved Guideline—Third Edition* was developed for manufacturers, regulators, and providers of proficiency testing or external quality assessment programs, although it is useful to clinical laboratories as well. The document helps users 1) determine whether noncommutability is the source of unexpected results that are sometimes observed with processed samples when two quantitative measurement procedures are compared, 2) display the magnitude of the effects, and 3) ensure that laboratory performance is evaluated fairly if noncommutability is present. The suggested protocol was developed using patient samples as the standard of comparison.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Copyright ©2014 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Proposed Guideline
April 1999

Approved Guideline
March 2001

Approved Guideline—Second Edition
January 2005

Approved Guideline—Third Edition
August 2014

ISBN 1-56238-971-8 (Print)
ISBN 1-56238-972-6 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Committee Membership

Consensus Committee on Evaluation Protocols

James F. Pierson-Perry
Chairholder
Siemens Healthcare Diagnostics
Newark, Delaware, USA

Karl De Vore
Bio-Rad Laboratories, Inc.
Irvine, California, USA

Gene Pennello, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Mitchell G. Scott, PhD
Vice-Chairholder
Barnes-Jewish Hospital, Washington University School of Medicine
St. Louis, Missouri, USA

Robert J. McEnroe, PhD
Roche Diagnostics Operations, Inc.
Indianapolis, Indiana, USA

Megan E. Sawchuk, MT(ASCP)
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Karl De Vore
Chairholder
Bio-Rad Laboratories, Inc.
Irvine, California, USA

Thomas A. Long
College of American Pathologists
Northfield, Illinois, USA

Staff
Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Dorothy J. Ball, PhD
Vice-Chairholder
Irving, Texas, USA

Nisar Pampori, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Luann Ochs, MS
Senior Vice President – Operations

Jeffrey R. Budd, PhD
Beckman Coulter
Chaska, Minnesota, USA

Hubert W. Vesper, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Megan L. Tertel, MA
Editorial Manager

Ramon A. Durazo-Arvizu, PhD
Loyola University Medical Center
Maywood, Illinois, USA

Kathie Goodwin, RAC, MBA, MT(ASCP)BB
Roche Diagnostics, Inc.
Indianapolis, Indiana, USA

Joanne P. Christopher, MA
Editor

This is a preview of “CLSI EP14-A3”. Click here to purchase the full version from the ANSI store.
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii

1 Introduction.. 1
 1.1 Scope.. 1
 1.2 Background... 2
 1.3 Standard Precautions ... 4
 1.4 Terminology... 4

2 Commutability Determination Process .. 7
 2.1 Process Flow Chart .. 9
 2.2 Materials and Samples Assembly ... 10
 2.3 Measurement Procedure .. 11
 2.4 Data Analysis .. 11
 2.5 Documenting Results of the Commutability Evaluation ... 15

3 Conclusion ... 16

4 Supplemental Information ... 17
References... 17

Appendix A. Description of Mathematical Model Used for Evaluating Commutability of
Processed Samples Using Deming Regression ... 19

Appendix B. Outlier Evaluation for a Measurement Procedure Comparison Using Deming
Regression... 24

Appendix C. Examples of Completed Analyses ... 26

The Quality Management System Approach .. 40

Related CLSI Reference Materials .. 41
Foreword

When manufacturers of diagnostic reagents develop measurement procedures, they attempt to design them so that they will report measurand values accurately for the intended patient samples. These measurement procedures may not be designed to produce accurate results when nonpatient samples such as external quality assessment samples, proficiency testing samples, or QC samples are measured. Because such nonpatient sample matrixes typically undergo some processing and spiking of additional components, and therefore are altered in some manner, measurand results may not reflect the accuracy that would be observed for patient samples. Processed samples that recover like patient samples are called commutable, while those that do not are called noncommutable. In this document, as with its previous edition, a matrix effect is defined broadly as differing test result biases in processed samples vs patient samples due to unknown causes. The matrix effects that cause biases compared to patient samples could be correlated to differences in conditions as encompassing as the entire measurement system or as specific as a reagent lot within a single measurement system.

Biases due to matrix effects in processed samples have the potential to affect the quality of patient care by giving an incorrect impression of the accuracy of a measurement procedure. Depending on the intended use of the processed sample, the impact can range from negligible to serious. For example, a specific bias in a measuring interval verification sample set may have a different impact on the quality of patient care than the same bias in a QC sample. A measuring interval sample set matrix-related bias can directly affect the measuring interval allowed in patient sample results, whereas a QC matrix-related bias may affect the interpretation of QC results following a reagent lot change.

Overview of Changes

As with the previous edition of this document, the objective of EP14 is to provide ways to identify the presence of noncommutability so that improvements in measurement procedure specificity and fluid compatibility may be considered. For example, the beneficial outcome of the evaluation may be a change in the processed sample’s matrix or its additives, with an improvement in sample commutability. The evaluation is applicable to any type of processed sample, including (but not limited to) common calibrators, trueness controls, and certified reference materials. The techniques described are also valid for testing the commutability of other samples such as measurement procedure-specific calibrators or patient samples that have been altered (eg, added preservatives or spiking material, diluted, depleted, or frozen). This guideline will be helpful in exploring differences in test material results between measurement procedures, especially when such material serves as a basis for determining measurement procedure performance.

Key Words

Analytical interference, bias, commutability, Deming regression, matrix, matrix effect
Evaluation of Commutability of Processed Samples; Approved Guideline—
Third Edition

1 Introduction

This chapter includes:

• Document scope and applicable exclusions
• Background information pertinent to the document content
• Standard Precautions information, as applicable
• Terms and definitions used in the document
• “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions, where applicable
• Abbreviations and acronyms used in the document

1.1 Scope

This guideline provides protocols that can evaluate commutability in any nonpatient processed samples when tested using quantitative measurement procedures. Such processed samples may be used for proficiency testing/external quality assessment (PT/EQA), measuring interval verification sample sets, or QC samples.

The guideline is intended to be used by developers of commercial diagnostic tests as well as laboratory-developed tests, manufacturers of measuring interval sample sets and QC samples, and PT or EQA providers. This guideline may also be useful to all clinical laboratory professionals wishing to investigate a processed sample’s commutability.

EP14 is intended to assist in the education of clinical laboratorians, regulators, and diagnostic manufacturers about the commutability of processed materials, and how a sample’s matrix can affect some measurand values and their interpretation (referred to as matrix effects). For example, professionals may not be warned of a matrix effect caused by the interaction of processed PT/EQA material and the measurement procedure, and therefore the data may suggest to them that erroneous patient results are being generated, when in fact the results may be acceptable. Examples of a matrix effect due to the interaction of a processed QC and certain reagent lot(s) exist in the literature. Therefore, these types of effects should not be a surprise to experienced laboratory staff and should not lead to erroneous conclusions about the same effect occurring in patient samples. This guideline should assist all interested parties in not only evaluating the presence or absence of a matrix effect, but also increasing awareness that there may be different levels of risk to the quality of patient care that are dependent on the intended use of a processed matrix.

This guideline can also be used by laboratorians performing quantitative tests for a wide variety of measurands across various disciplines to understand the commutability of processed samples. This guideline does not apply to qualitative tests.