This document describes the estimation of imprecision and of bias for clinical laboratory quantitative measurement procedures using a protocol that can be completed within as few as five days.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document EP15-A3—User Verification of Precision and Estimation of Bias; Approved Guideline—Third Edition describes the verification of precision claims and estimation of relative bias for quantitative methods performed within the laboratory. Included are guidelines for duration, experimental designs, materials, data analysis summarization, and interpretation—techniques adaptable for the widest possible range of analytes and device complexity. A balance is created in the document between the complexity of design and formulae, and the simplicity of operation. The protocol is designed to be completed within five working days based on a uniform experimental design yielding estimates of imprecision and bias.

Committee Membership

Consensus Committee on Evaluation Protocols

James F. Pierson-Perry
Chairholder
Siemens Healthcare Diagnostics, Inc.
Newark, Delaware, USA

Mitchell G. Scott, PhD
Vice-Chairholder
Barnes-Jewish Hospital
St. Louis, Missouri, USA

Karl De Vore
Bio-Rad Laboratories
Irvine, California, USA

Robert J. McEnroe, PhD
Roche Diagnostics, Inc.
Indianapolis, Indiana, USA

James H. Nichols, PhD, DABCC, FACB
Vanderbilt University Medical Center
Nashville, Tennessee, USA

Gene Pennello, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Megan E. Sawchuk, MT(ASCP)
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Document Development Committee on Verification of Performance for Precision and Trueness

R. Neill Carey, PhD, FACC
Chairholder
Peninsula Regional Medical Center
Salisbury, Maryland, USA

Walter W. Hauck, PhD
USP
Rockville, Maryland, USA

Anders Kallner, MD, PhD
Karolinska Hospital
Stockholm, Sweden

Marina V. Kondratovich, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Merle B. Smith, MBA, MS, MT(ASCP)
Siemens Healthcare Diagnostics, Inc.
Newark, Delaware, USA

Aparna Srinivasan, PhD
Abaxis
Union City, California, USA

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Luann Ochs, MS
Senior Vice President – Operations
Staff Liaison

Ron S. Quicho, MS
Project Manager

Megan L. Tertel, MA
Editorial Manager

Joanne P. Christopher, MA
Editor

Patrice E. Polgar
Editor
Acknowledgment

CLSI and the Consensus Committee on Evaluation Protocols gratefully acknowledge the following individuals for their help in preparing this document:

A. Paul Durham
APD Consulting
Culver City, California, USA

Jonathan Guy Middle, PhD
Birmingham, United Kingdom

James F. Pierson-Perry
Siemens Healthcare Diagnostics, Inc.
Newark, Delaware, USA
Contents

Abstract ... i
Committee Membership ... iii
Foreword .. vii

Chapter 1: Introduction ... 1
 1.1 Scope ... 2
 1.2 Background ... 3
 1.3 Standard Precautions ... 3
 1.4 Terminology ... 4
 1.5 Overview of the Protocol ... 8
 1.6 Performance Standards ... 10

Chapter 2: Precision Verification Study .. 11
 2.1 Familiarization Period .. 12
 2.2 Overview and Limitations of the Precision Verification Study 14
 2.3 Experimental Procedure Design ... 17

Chapter 3: Estimation of Bias by Testing Materials With Known Concentrations 41
 3.1 Overview of the Bias Experiment ... 42
 3.2 Selecting Reference Materials ... 44
 3.3 Target Values and Their Standard Errors .. 47
 3.4 Mean Values and Their Standard Errors ... 48
 3.5 The Verification Interval ... 49
 3.6 Interpretation .. 54
 3.7 Worked Examples ... 55

Chapter 4: Conclusion ... 63
Contents (Continued)

Chapter 5: Supplemental Information ... 65

References ... 66

Appendix A. Precision Verification Study: Experimental Designs and Missing Values .. 68

Appendix B. Precision Calculations .. 69

Appendix C. Materials With Known Concentrations ... 76

The Quality Management System Approach ... 80

Related CLSI Reference Materials .. 81
Before a laboratory can introduce a new measurement procedure for reporting results of patient testing, it must evaluate the procedure’s analytical performance. Typically, laboratories specify the performance required of the procedure and then verify that the procedure’s performance meets the specification. Performance requirements may be defined by regulatory requirements and/or medical usefulness requirements.

In this edition of EP15, the user is verifying the manufacturer’s claim for precision, and estimating bias, because there is unlikely to be a bias claim to verify. The document development committee felt that it was necessary to keep precision and trueness together in one document because the document demonstrates how to measure both in the same experiment.

Most manufacturers follow CLSI document EP05 to establish precision claims, and these claims are relatively easily verifiable using the approach prescribed in EP15. The committee chose to keep the number of days in the experiment at five, and to increase the number of replicates per day to five, in order to obtain more reliable estimates of repeatability and within-laboratory imprecision. The most complicated calculations were replaced by tables to make calculations easier and to reduce the opportunities for mathematical errors.

This document is primarily intended for use when an established measurement procedure is initially set up in the laboratory. It may also be used to verify performance after corrective action following a failed proficiency testing event.
Overview of Changes

In this revision of EP15, the experiment to demonstrate trueness using materials with known concentrations was expanded to five days, with encouragement to work with the same sample materials used in the precision verification experiment. The intention of the document development committee was for the user to perform a single experiment to verify precision and trueness simultaneously. This experiment is designed to produce reliable estimates of bias between the mean measurand concentration observed by use of the candidate measurement procedure and the assigned measurand concentration of the material. The degree to which the observed bias is a measurement of trueness depends on the quality of the measurement procedure used to assign the measurand concentrations of the material. As with the precision experiment, complicated calculations were replaced by tables wherever possible.

Similar to previous editions of the document, the document development committee had two principal goals during the development of EP15. One goal was to develop a testing protocol that is suitable for use in the large clinical laboratory, yet simple enough to be applicable in the point-of-care or physician’s office laboratory. The second goal was to develop a protocol that is sufficiently rigorous to provide statistically valid conclusions for verification studies. The bias is assessed by a recovery experiment. Instead of manual worksheets, calculations may be readily performed with CLSI’s StatisPro software or generic spreadsheet software (see recommendation below).

The committee feels that it is important to provide the interested user with an explanation of the statistical procedures that are used in the document. If the user has access to software specifically designed to perform the calculations described in the document, such as StatisPro, a detailed understanding of the statistics is not necessary. Flow charts are included to provide the user with the necessary overview of the experiment and data processing. In any case, the user must follow the protocol described as closely as possible in order to obtain reliable results.

NOTE:
Instead of manual worksheets, calculations may be readily performed with CLSI’s StatisPro software or generic spreadsheet software.

IMPORTANT NOTE:
In any case, the user must follow the protocol described as closely as possible in order to obtain reliable results.
Chapter 1

Introduction

This chapter includes:

- Document scope and applicable exclusions
- Background information pertinent to the document content
- Standard Precautions information, as applicable
- Terms and definitions used in the document
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions, where applicable
- Abbreviations and acronyms used in the document
User Verification of Precision and Estimation of Bias; Approved Guideline—Third Edition

Introduction

1.1 Scope

This guideline was developed as a protocol for simultaneously verifying a manufacturer’s claims for precision of a measurement procedure and the trueness of the measurement procedure relative to the assigned values of materials with known concentrations.

The precision verification section of the guideline was developed for situations in which the performance of the procedure has been previously established and documented by experimental protocols with larger scope and duration. It has relatively weak power to reject precision claims with statistical confidence, and should only be used to verify that the procedure is operating in accordance with the manufacturer’s claims. This document is not intended to establish or validate the precision performance of a measurement procedure.

The bias estimation section of the guideline relies on 25 or more measurements by the candidate procedure, made over five or more days, to estimate the measurand concentrations of materials with known concentrations. These estimated measurand concentrations are compared to the assigned measurand concentrations of the materials to estimate bias. The observed bias is a measure of trueness if a high-quality measurement procedure was used to assign the concentrations of the materials.

Because this document’s scope is limited to verification of precision and estimation of bias, other more rigorous CLSI protocols (e.g., see CLSI documents EP06, EP17, and EP28) are employed to validate the measurement procedure’s performance against the user’s needs. CLSI documents EP05 and EP09 were developed to assist manufacturers in establishing the performance of a diagnostic device for precision and trueness, respectively. (Also, see CLSI documents EP06, EP17, EP28, and EP10.) CLSI document EP10 is intended for the rapid preliminary evaluation of precision, bias, sample carryover, drift, and nonlinearity.

One may also note that the EP15 protocol has an implicit assumption: Namely, that if the estimated precision and bias are acceptable, then the overall error (e.g., total analytical error) of the measurement procedure is acceptable. This implied model can lead to an underestimation of the total analytical error in cases in which other effects are important. Besides conducting more extensive evaluations mentioned above, one could also consider performing the protocol within CLSI document EP21. This protocol is a direct estimation of total analytical error, and does not rely on a model.