This document provides guidance based on risk management for laboratories to develop quality control plans tailored to the particular combination of measuring system, laboratory setting, and clinical application of the test.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document EP23-A—Laboratory Quality Control Based on Risk Management; Approved Guideline provides guidance to laboratories on the development of quality control plans for measuring systems. Regulatory requirements, information provided by the manufacturer, information pertaining to the laboratory environment, and medical requirements for the test results are evaluated, using risk management principles, to develop a quality control plan tailored to the particular combination of measuring system, laboratory environment, and clinical application. The effectiveness of the laboratory quality control plan is monitored to detect trends, identify corrective actions, and provide continuous quality improvement. The advantages and limitations of various quality control processes are considered.

Copyright ©2011 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Proposed Guideline
January 2010

Approved Guideline
October 2011

ISBN 1-56238-767-7 (Print)
ISBN 1-56238-768-5 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Committee Membership

Consensus Committee on Evaluation Protocols

Greg Cooper, CLS, MHA
Chairholder
W. Gregory Cooper LLC
Denton, Texas, USA

James F. Pierson-Perry
Vice-Chairholder
Siemens Healthcare Diagnostics
Newark, Delaware, USA

John Rex Astles, PhD, FACB,
DABCC
Centers for Disease Control
and Prevention
Atlanta, Georgia, USA

Jeffrey R. Budd, PhD
Beckman Coulter, Inc.
Chaska, Minnesota, USA

Jonathan Guy Middle, PhD
University Hospital Birmingham
NHS Trust
Birmingham, United Kingdom

Mitchell G. Scott, PhD
Barnes-Jewish Hospital, Washington
University School of Medicine
St. Louis, Missouri, USA

Lakshmi Vishnuvajjala, PhD
FDA Center for Devices and
Radiological Health
Rockville, Maryland, USA

Document Development Committee on Laboratory Quality Control Based on Risk Management

James H. Nichols, PhD, DABCC, FACB
Chairholder
Baystate Medical Center
Springfield, Massachusetts, USA

Greg Cooper, CLS, MHA
W. Gregory Cooper LLC
Denton, Texas, USA

Devery Howerton, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Ellis Jacobs, PhD, DABCC, FACB
New York City Health & Hospital Corporation
New York, New York, USA

W. Gregory Miller, PhD
Virginia Commonwealth University
Richmond, Virginia, USA

Valerie L. Ng, PhD, MD
Alameda County Medical Center/
Highland General Hospital
Oakland, California, USA

Nils B. Person, PhD, FACB
Siemens Healthcare Diagnostics
Flanders, New Jersey, USA

Arleen Pinkos, BS, MT(ASCP)
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Ann E. Snyder, MT(ASCP)
Centers for Medicare & Medicaid Services
Baltimore, Maryland, USA

Marcia L. Zucker, PhD
Consultant
Metuchen, New Jersey, USA

Mitchell G. Scott, PhD
Barnes-Jewish Hospital, Washington
University School of Medicine
St. Louis, Missouri, USA

Lakshmi Vishnuvajjala, PhD
FDA Center for Devices and
Radiological Health
Rockville, Maryland, USA

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Luann Ochs, MS
Vice President,
Standards Development

Ron S. Quicho
Staff Liaison

Megan P. Larrisey, MA
Assistant Editor
Acknowledgment

CLSI and the Document Development Committee on Laboratory Quality Control Based on Risk Management gratefully acknowledge the following individuals for their contributions during the development of this document:

Sousan S. Altaie, PhD
FDA Center for Devices and Radiological Health
Rockville, Maryland, USA

Zoe Brooks
Harmonized Quality
Worthington, Ontario, Canada

Mary F. Burritt, PhD
Mayo Clinic
Scottsdale, Arizona, USA

William J. Castellani, MD
Penn State Hershey Medical Center
Hershey, Pennsylvania, USA

Jeff Dahlen, PhD
Accumetrics
San Diego, California, USA

Christine Diehl
Burns, Tennessee, USA

Valerio Genta, MD
Sentara Virginia Beach General Hospital
Virginia Beach, Virginia, USA

Paul Glavina
Abbott Point of Care
Ottawa, Ontario, Canada

Anita V. Glombik
Bio-Rad Laboratories GmbH
Munich, Germany

Abdel-Basit Halim, PharmD, PhD, DABCC
Daiichi Sankyo Pharma Development
Edison, New Jersey, USA

Aristides T. Hatjimihail, MD, PhD
Hellenic Complex Systems Laboratory
Drama, Greece

Richard W. Jenny, PhD
New York State Department of Health
Albany, New York, USA

Francisca L. Lehr, MS, MT(ASCP)
Centers for Medicare & Medicaid Services
Seattle, Washington, USA

Ronald Leneau, MS, MT(ASCP)
Centers for Medicare & Medicaid Services
Baltimore, Maryland, USA

Jacob (Jack) B. Levine, MBA
Siemens Healthcare Diagnostics
Tarrytown, New York, USA

John J. Murphy, MHS
State of Connecticut Department of Public Health
Hartford, Connecticut, USA

Robert Murray, JD, PhD
Advocate Healthcare Lutheran General Park Ridge, Illinois, USA

Curtis A. Parvin, PhD
Bio-Rad Laboratories
Plano, Texas, USA

Donald M. Powers, PhD
Powers Consulting Services
Rochester, New York, USA

Wadid Sadek, PhD
Waynesboro, Virginia, USA

Mitchell G. Scott, PhD
Washington University School of Medicine
St. Louis, Missouri, USA

Liz Walsh, CLS, NCA
Instrumentation Laboratory
Lexington, Massachusetts, USA

Gitte Wennecke
Radiometer Medical ApS
Bronshoj, Denmark

Acknowledgment in Memoriam of Dr. Ronald H. Laessig

CLSI and the Document Development Committee on Laboratory Quality Control Based on Risk Management gratefully acknowledge the valuable contributions of the late Dr. Ronald H. Laessig, who was an active participant during the development of this document.
Contents

Abstract ... i
Committee Membership .. iii
Foreword .. vii

Chapter 1: Introduction .. 1
 1 Scope ... 2
 2 Introduction .. 2
 2.1 Quality Control Plan ... 2
 2.2 Risk Management .. 5

Chapter 2: Path of Workflow ... 18
 5 Process Flow Chart .. 19
 6 EP23 Path of Workflow ... 20
 6.1 Information Gathering for Risk Assessment 20
 6.2 Process Mapping ... 26
 6.3 Developing the Quality Control Plan 31
 6.4 Postimplementation Monitoring of the Quality Control Plan 40

Chapter 3: Quality System Essentials 43
 7 Quality System Essentials .. 44
 7.1 Organization ... 44
 7.2 Documents and Records 44
 7.3 Nonconforming Event Management 45
 7.4 Assessments .. 45
 7.5 Continual Improvement 45

Chapter 4: Conclusion .. 46

Chapter 5: Supplemental Information 47

References .. 48

Appendix A. The Quality Control Toolbox 50
Appendix B. Quick Guide Checklist for Establishing a Quality
Control Plan Based on Risk Management 61
Appendix C. The Laboratory Risk Assessment: Example Glucose
Measurement Using an Automated Measuring System 64
Appendix D. Summary of Laboratory Risk Assessment Table. Example:
Glucose Measurement on an Automated Measuring System 89
Appendix E. The Quality Control Plan Developed From the Individual
Components of the Quality Control Strategies From Appendixes C and D.
Example: Glucose Measurement on an Automated Measuring System 96
Appendix F. Example of Failure Investigation and Corrective Action for
Glucose Measurement on an Automated Measuring System 98

The Quality Management System Approach 104
Related CLSI Reference Materials 105
Although the manufacturer is responsible for quality in design of its measuring system and reagents, the laboratory and, ultimately, the laboratory director are accountable for the quality of test results. To establish effective quality control (QC), laboratories should process an array of information (regulatory requirements, manufacturer-provided information, the laboratory’s environment, and the medical applications of tests performed) through a risk assessment process.

This process identifies potential weaknesses in the measuring system and environment that are weighed against the probability for error, the effectiveness of control processes built into the measuring system, and the laboratory’s assessment of risk in consideration of the clinical use of a laboratory result. This document provides guidance to laboratories for establishing a quality control plan (QCP). Once developed, the QCP is monitored for effectiveness and modified as unanticipated failure modes or underestimated risks of error are discovered or as particular control procedures are no longer required once sufficient objective data demonstrating reliable performance have been established. The advantages and limitations of a variety of QC measures are discussed to help the laboratory develop a QCP that is appropriate for its particular measuring system, laboratory, and clinical environment.

Compliance with EP23 may not satisfy the requirements of all regulatory, accreditation, or certification bodies. Laboratories need to comply with all applicable requirements in the development of their QCPs.
Chapter 1
Introduction

In this document, you will learn how to create a quality control plan (QCP) that is customized for your institution, facility, and laboratory, so that you can run your tests in an effective and efficient manner, improving patient care.

You will learn:

- How to compile information into a QCP
- The many types of tools in the QC toolbox, and which are most effective for your situation
- How to detect potential errors
- How to determine if potential errors can cause harm
- How to help prevent errors from occurring
- How to ensure your QCP is effective

This is a preview of "CLSI EP23-A". Click here to purchase the full version from the ANSI store.
Laboratory Quality Control Based on Risk Management; Approved Guideline

1 Scope

This document describes good laboratory practice for developing and maintaining a QCP for medical laboratory testing using internationally recognized risk management principles. An individual QCP should be established, maintained, and modified as needed for each measuring system. The QCP is based on the performance required for the intended medical application of the test results. Risk mitigation information obtained from the manufacturer and identified by the laboratory, applicable regulatory and accreditation requirements, and the individual health care and laboratory setting are considered in development of the QCP. This document is intended to guide laboratories in determining QC procedures that are both appropriate and effective for the test being performed.

This document may not satisfy the requirements of all regulatory, accreditation, or certification bodies. Laboratories need to comply with all applicable requirements in the development of their QCPs.

2 Introduction

2.1 Quality Control Plan

Health care providers need test results that are relevant, accurate, and reliable for patient care. A number of factors can adversely affect the quality of test results and present a risk of harm to the patient, from failures of the measuring system, to operator errors, to environmental conditions. Failure is used in this document in the context of risk management and means, in the broadest sense, a case when the system does not meet the user’s expectation. Failure includes the inability of a measurement process to perform its intended functions satisfactorily or within specified performance limits, errors of a measuring system that may produce an incorrect result, and incorrect use of a measuring system that may cause an incorrect result. Risk management is the systematic application of management policies, procedures, and practices to the tasks...