This document contains guidelines for determining reference values and reference intervals for quantitative clinical laboratory tests.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org

This is a preview of "CLSI EP28-A3C". Click here to purchase the full version from the ANSI store.
Clinical and Laboratory Standards Institute document EP28-A3c—Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition is written for users of diagnostic laboratory tests. It offers a protocol for determining reference intervals that meet the minimum requirements for reliability and usefulness. The guideline focuses on health-associated reference values as they relate to quantitative clinical laboratory tests. Included are various requirements for studies to determine reference values for a new analyte or a new analytical method of a previously measured analyte. Also discussed is the transfer of established reference values from one laboratory to another.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Copyright ©2008 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Proposed Guideline
March 1992

Approved Guideline
June 1995

Approved Guideline—Second Edition
June 2000

Proposed Guideline—Third Edition
March 2008

Approved Guideline—Third Edition
November 2008
October 2010 (corrected version)
Committee Membership

Area Committee on Clinical Chemistry and Toxicology

David A. Armbruster, PhD, DABCC, FACB
Chairholder
Abbott
Abbott Park, Illinois

Christopher M. Lehman, MD
Vice-Chairholder
Univ. of Utah Health Sciences Center
Salt Lake City, Utah

John Rex Astles, PhD, FACB
Centers for Disease Control and Prevention
Atlanta, Georgia

David M. Bunk, PhD
National Institute of Standards and Technology
Gaithersburg, Maryland

David G. Grenache, PhD, MT(ASCP), DABCC
University of Utah, ARUP Laboratories
Salt Lake City, Utah

Steven C. Kazmierczak, PhD, DABCC, FACB
Oregon Health and Science University
Portland, Oregon

Linda Thienpont, PhD
University of Ghent
Ghent, Belgium

Jeffrey E. Vaks, PhD
Roche Molecular Diagnostics
Pleasanton, California

Hubert Vesper, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia

Jack Zakowski, PhD, FABCC
Beckman Coulter, Inc.
Brea, California

Advisors

Mary F. Burritt, PhD
Mayo Clinic
Scottsdale, Arizona

Paul D’Orazio, PhD
Instrumentation Laboratory
Lexington, Massachusetts

Carl C. Garber, PhD, FABCC
Quest Diagnostics, Incorporated
Lyndhurst, New Jersey

Uttam Garg, PhD, DABCC
Children’s Mercy Hospital and Clinic
Kansas City, Missouri

Neil Greenberg, PhD
Ortho-Clinical Diagnostics, Inc.
Rochester, New York

Harvey W. Kaufman, MD
Quest Diagnostics, Inc.
Lyndhurst, New Jersey

W. Gregory Miller, PhD
Virginia Commonwealth University
Richmond, Virginia

Gary L. Myers, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia

David Sacks, MD
Brigham and Women’s Hospital and Harvard Medical School
Boston, Massachusetts

Bette Seamonds, PhD
Mercy Health Laboratory
Swarthmore, Pennsylvania

Dietmar Stöckl, PhD
STT Consulting
Horebeke, Belgium

Thomas L. Williams, MD
Nebraska Methodist Hospital
Omaha, Nebraska

Working Group on Reference Intervals

Gary L. Horowitz, MD
Chairholder
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Soussan S. Altaie, PhD
FDA Ctr. for Devices/Rad. Health
Rockville, Maryland

James C. Boyd, MD
UVA Health System
Charlottesville, Virginia

Ferruccio Ceriotti, MD
Diagnostica E Ricerca San Raffaele
Milano, Italy

Uttam Garg, PhD, DABCC
Children’s Mercy Hospitals and Clinics
Kansas City, Missouri

Amadeo Pesce, PhD
University of Cincinnati College of Medicine
Cincinnati, Ohio

Harrison E. Sine, PhD
Roche Diagnostics, Inc.
Indianapolis, Indiana

Jack Zakowski, PhD, FACB
Beckman Coulter, Inc.
Brea, California

Advisors

Paul S. Horn, PhD
University of Cincinnati Psychiatry Service, Veterans Affairs Medical Center Cincinnati
Cincinnati, Ohio

James J. Miller, PhD, DABCC, FACB
University of Louisville School of Medicine
Louisville, Kentucky
Acknowledgment

This guideline was prepared by Clinical and Laboratory Standards Institute (CLSI), as part of a cooperative effort with IFCC to work toward the advancement and dissemination of laboratory standards on a worldwide basis. CLSI gratefully acknowledges the participation of IFCC in this project. The IFCC experts for this project are Ferruccio Ceriotti, MD, Diagnostica E Ricerca San Raffaele; and James C. Boyd, MD, UVA Health System.
Contents

Abstract .. i

Committee Membership.. iii

Foreword .. vii

1 Scope .. 1

2 Introduction .. 1

3 Standard Precautions.. 2

4 Terminology ... 2
 4.1 A Note on Terminology .. 2
 4.2 Definitions .. 3
 4.3 Abbreviations/Acronyms .. 4
 4.4 Clarifications ... 5

5 Use of Système International d’Unités (SI Units) ... 5

6 Protocol Outline for Obtaining Reference Values and Establishing Reference Intervals 5
 6.1 New Analyte or Analytical Method .. 5
 6.2 Multicenter Reference Interval Studies .. 7
 6.3 Previously Measured Analyte ... 7

7 Selection of Reference Individuals .. 8
 7.1 Introduction ... 8
 7.2 Exclusion and Partitioning .. 8
 7.3 Sample Questionnaire ... 9
 7.4 Selection of Reference Individuals ... 11

8 Preanalytical and Analytical Considerations ... 13
 8.1 Subject Preparation ... 13
 8.2 Specimen Type, Collection, Handling, and Storage ... 14
 8.3 Analytical Method Characteristics .. 15

9 Analysis of Reference Values .. 15
 9.1 Minimum Number of Reference Values ... 16
 9.2 Treatment of Outlying Observations .. 17
 9.3 Partitioning of Reference Values .. 19
 9.4 Examples ... 20
 9.5 Confidence Intervals for Reference Limits ... 26

10 Transference ... 28
 10.1 Transference: Comparability of the Analytical System .. 29
 10.2 Transference: Comparability of the Test Subject Population 30

11 Validation ... 30
 11.1 Validation: Subjective ... 31
 11.2 Validation: Using Small Numbers of Reference Individuals 31
 11.3 Validation: Using Larger Numbers of Reference Individuals 33
Contents (Continued)

12 Presentation of Reference Values .. 34
 12.1 Introduction ... 34
 12.2 Laboratory Presentation ... 34
 12.3 Manufacturer Presentation .. 35

13 Other Issues .. 36
 13.1 Qualitative Analysis ... 36
 13.2 Therapeutic Drug Levels ... 36
 13.3 Time-Dependent/Challenge Tests ... 36
 13.4 Individual Variation ... 37
 13.5 “Critical Values” .. 37

14 Summary .. 37

References ... 39

Appendix A. Effectiveness of Several Statistical Tests in Validating Transference of Reference
Intervals .. 41

Appendix B. Robust Calculation .. 42

Summary of Consensus Comments and Subcommittee Responses .. 46

Summary of Delegate Comments and Subcommittee Responses ... 47

The Quality Management System Approach .. 58

Related CLSI Reference Materials ... 59
Foreword

A measured or observed laboratory test result from a person (usually a patient) is compared with a reference interval for the purpose of making a medical diagnosis, therapeutic management decision, or other physiological assessment. The interpretation of clinical laboratory data is, therefore, a comparative decision-making process. For this decision-making process to occur, reference values are needed for all tests in the clinical laboratory, and the provision of reliable reference intervals is an important task for clinical laboratories and diagnostic test manufacturers. The reference values most commonly used (known as “normal values” and sometimes “expected values”) have traditionally been poorly defined and certainly not determined by a uniform process. It is now apparent that it is important to develop reference intervals using a more systematic process that takes into account the various influences on the measured laboratory test results.

A theory of reference values that provides definitions, principles, and procedures for the determination and use of reference values was developed by the Expert Panel on Theory of Reference Values (EPTRV) of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the Standing Committee on Reference Values of the International Council for Standardization in Haematology (ICSH). The fruits of the tireless labors of these committees appear in a series of articles\(^\text{1-6}\) that provide a rational approach and sound basis for the determination of reference values. These definitions also provided a basis for the development of this guideline. CLSI is indebted to the members of the IFCC committee and to the many other investigators who contributed to this discipline and upon whose knowledge it has drawn.

This guideline begins with definitions proposed by the EPTRV of the IFCC that are important to the discussion of reference values. An outline of the broad procedural protocol for establishing reference intervals is included, followed by specifics of each of the composite processes. Issues related to the reference subject selection process, the importance of preanalytical and analytical considerations, the calculation methods and requirements for estimating valid reference intervals, and the transference of reference intervals are discussed. Examples of the recommended estimation and calculation processes are provided. Finally, issues related to the presentation and use of reference intervals are discussed, followed by a brief section that examines a number of important but collateral reference value topics not amenable to inclusion in this document.

Key Words

Critical value, observed value, reference distribution, reference individual, reference interval, reference limit, reference population, reference sample group, reference value
Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition

1 Scope

This document provides diagnostic laboratories and diagnostic test manufacturers with updated guidelines for determining reference intervals for quantitative laboratory tests. It includes specific recommendations regarding procedures that can be used to establish and verify reliable reference intervals for use in clinical laboratory medicine. By following these recommendations, laboratories can provide reference intervals that are adequate and useful for clinical interpretation.

Issues related to the reference subject selection process, the importance of preanalytical and analytical considerations, the calculation methods and requirements for estimating valid reference intervals, and the transference of reference intervals are discussed. Examples of the recommended estimation and calculation processes are provided. Finally, issues related to the presentation and use of reference intervals are discussed, followed by a brief section that examines a number of important but collateral reference value topics not amenable to inclusion in this document.

2 Introduction

Since the last update to this document (2000), two notable trends have emerged in clinical laboratory practice to which the working group would like to call attention.

First, for some analytes, reference intervals have been replaced by decision limits, established by national (or international) consensus. As examples, consider cholesterol and glycated hemoglobin. For such analytes, there is no need to establish de novo, or even to verify, the reference intervals. Rather, laboratories must concern themselves with the accuracy of the results they report; that is, that cholesterol values they report are not appreciably different from the values that are reported by a certified reference laboratory on the same samples. For such analytes, the onus falls on manufacturers to ensure their methods are traceable (see CLSI document X05) and on individual laboratories to ensure they run those methods correctly (using peer group quality control [QC], proficiency testing, etc.).

Second, the working group recognizes the reality that, in practice, very few laboratories perform their own reference interval studies. As indicated in this document, the working group endorses its previous recommendation that the best means to establish a reference interval is to collect samples from a sufficient number of qualified reference individuals to yield a minimum of 120 samples for analysis, by nonparametric means, for each partition (e.g., sex, age range).

The fact of the matter, though, is that few laboratories, or even manufacturers, do such studies. Often, if any study is done, far fewer individuals are used, with assumptions made about the underlying distributions and about the comparability among partitions. Sometimes (e.g., electrolytes), instead of performing a new reference interval study, laboratories and manufacturers refer to studies done many decades ago, when both the methods and the population were very different.

For these reasons, the working group believes strongly that individual laboratories should focus more on verifying reference intervals established elsewhere, a much less formidable task. As noted in this document, this can be done in at least two practical ways:

1. If a laboratory has previously established a reference interval for its own population, then it can verify that reference interval by transference, using a CLSI/NCCLS document EP09 protocol (see Section 10). A major advantage of this option is there is no need to collect samples from