This guideline discusses the necessary and recommended data for selecting appropriate breakpoints and quality control ranges for antimicrobial agents.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute
Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute guideline M23—Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters offers guidance for developing breakpoints and QC ranges for antimicrobial susceptibility tests against aerobic and anaerobic bacteria, as well as selected fungi, according to CLSI antimicrobial susceptibility testing standards. It describes the data used by the Subcommittees on Antimicrobial Susceptibility Testing and Antifungal Susceptibility Tests to establish these breakpoints and QC ranges for antimicrobial agents, including microbiological data, pharmacokinetic and pharmacodynamic characteristics, and clinical data. As antimicrobial agents are used in practice, additional experience accrued may be used to reassess breakpoints or QC ranges. Users of these guidelines should understand that susceptibility test results cannot predict clinical outcomes with absolute certainty. They should be used along with best clinical judgment and laboratory support to most effectively serve the patient.

Copyright ©2018 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedures manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Previous Editions:

ISBN 1-56238-842-8 (Print)
ISBN 1-56238-843-6 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Committee Membership

Consensus Council

Carl D. Mottram, RRT, RPFT, FAARC
Chairholder
Mayo Clinic
USA

Karen W. Dyer, MT(ASCP), DLM
Centers for Medicare & Medicaid Services
USA

Joseph Passarelli
Roche Diagnostics Corporation
USA

Dennis J. Ernst, MT(ASCP), NCPT(NCCT)
Vice-Chairholder
Center for Phlebotomy Education
USA

Thomas R. Fritsche, MD, PhD, FCAP, FIDSA
Marshallfield Clinic
USA

Andrew Quintenz
Bio-Rad Laboratories, Inc.
USA

J. Rex Astles, PhD, FACB, DABCC
Centers for Disease Control and Prevention
USA

Mary Lou Gantz, PhD, FACB
BioCore Diagnostics
USA

Robert Rej, PhD
New York State Department of Health – Wadsworth Center
USA

Lucia M. Berte, MA, MT(ASCP)SBB, DLM, CQA(ASQ)CMQ/OE
Laboratories Made Better!
USA

Ross J. Molinaro, PhD, MLS(ASCP)CM, DABCC, FACB
Siemens Healthcare Diagnostics, Inc.
USA

Subcommittee on Antimicrobial Susceptibility Testing

Melvin P. Weinstein, MD
Chairholder
Rutgers Robert Wood Johnson Medical School
USA

Romney M. Humphries, PhD, D(ABMM)
Accelerate Diagnostics
USA

Tony Mazzulli, MD, FACP, FRCP(C)
Mount Sinai Hospital
Canada

Jean B. Patel, PhD, D(ABMM)
Vice-Chairholder
Centers for Disease Control and Prevention
USA

Stephen G. Jenkins, PhD, D(ABMM), F(AAM)
Weill Cornell Medicine
USA

Robin Patel, MD
Mayo Clinic
USA

George M. Eliopolous, MD
Beth Israel Deaconess Medical Center
USA

James S. Lewis II, PharmD, FIDSA
Oregon Health and Science University
USA

Sandra S. Richter, MD, D(ABMM), FCAP, FIDSA
Cleveland Clinic
USA

Marcelo F. Galas
Pan American Health Organization
USA

Brandi Limbago, PhD
Centers for Disease Control and Prevention
USA

Michael Satlin, MD, MS
New York Presbyterian Hospital
USA

Matthew A. Wikler, MD, MBA, FIDSA
Chairholder
IDTD Consulting
USA

Amy J. Mathers, MD, D(ABMM)
University of Virginia Medical Center
USA

Barbara L. Zimmer, PhD
Beckman Coulter – West Sacramento
USA

Working Group on AST Criteria and QC Parameters

Matthew A. Wikler, MD, MBA, FIDSA
Chairholder
IDTD Consulting
USA

James S. Lewis II, PharmD, FIDSA
Oregon Health and Science University
USA

David P. Nicolau, PharmD, FCCP, FIDSA
Hartford Hospital
USA

Greg Moeck, PhD
The Medicines Company
Canada

Michael Satlin, MD, MS
New York Presbyterian Hospital
USA
Acknowledgment for the Expert Panel on Microbiology

CLSI, the Consensus Council, and the Subcommittee on Antimicrobial Susceptibility Testing gratefully acknowledge the Expert Panel on Microbiology for serving as technical advisors and subject matter experts during the development of this guideline.
Contents

Abstract.. i
Committee Membership.. iii
Foreword.. vii
Subcommittee on Antimicrobial Susceptibility Testing Mission Statement .. ix

Chapter 1: Introduction ... 1

1.1 Scope.. 1
1.2 Background... 1
1.3 Terminology... 2

Chapter 2: Development of Susceptibility Tests Methods .. 7

2.1 Establishing the Reference Method for an Antimicrobial Agent.. 7
2.2 Antibacterial Fixed Combination Studies (Such as β-Lactam Combination Agents) 8
2.3 Developing Disks for Disk Diffusion Tests.. 9
2.4 Validating Microbiological Data Derived From Sources Other Than Reference Methods 9

Chapter 3: Quality Control .. 11

3.1 Selecting Quality Control Strains ... 11
3.2 Procedure for Establishing or Revising Quality Control Strains or Ranges............................... 12
3.3 Quality Control Data Presentation and Interpretation .. 16

Chapter 4: Procedures for Establishing Breakpoints ... 19

4.1 New Breakpoints.. 20
4.2 Revision of Breakpoints.. 23
4.3 Provisional Breakpoints.. 27
4.4 Periodic Breakpoint Review .. 27
4.5 Surrogate Testing .. 29

Chapter 5: Minimal Inhibitory Concentration Breakpoints ... 31

5.1 Epidemiological Cutoff Value... 32
5.2 Nonclinical Pharmacokinetic-Pharmacodynamic Cutoff.. 36
5.3 Clinical Exposure-Response Cutoff.. 42
5.4 Clinical Cutoff ... 44
5.5 Consideration of the Cutoffs to Determine Breakpoints... 46

Chapter 6: Disk Diffusion Breakpoints .. 49

6.1 Selecting Isolates and Sample Size... 49
6.2 Reagent Disks... 49
6.3 Error-Rate Bounded Method for Selecting Disk Diffusion Breakpoints
 Based on Comparison With Dilution Test Results .. 49

Chapter 7: Conclusion .. 52

Chapter 8: Supplemental Information ... 52

References... 53

Appendix A. Guidelines for Clinical Isolate Selection and Sample Size .. 55
Appendix B. Sample Data Presentations ... 58
Contents (Continued)

Appendix C. Statement of Policy of the Antimicrobial Susceptibility Testing Subcommittees of the Clinical and Laboratory Standards Institute ... 62
Appendix D. Suggested Information to Be Covered on the Submission Cover Page 63
Appendix E. Drug “X” Minimal Inhibitory Concentration vs Zone Diameter 64
The Quality Management System Approach .. 66
Related CLSI Reference Materials ... 68
Foreword

CLSI develops standardized reference methods that measure the susceptibility of bacteria and fungi to antimicrobial agents in vitro. In this regard, the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) is responsible for developing and updating the following CLSI susceptibility testing documents:

- M02—Performance Standards for Antimicrobial Disk Susceptibility Tests
- M07—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically
- M45—Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria
- M11—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria
- M100—Performance Standards for Antimicrobial Susceptibility Testing (supplement for M02, M07, and M11)

The CLSI Subcommittee on Antifungal Susceptibility Tests is responsible for developing and updating the following CLSI susceptibility testing documents:

- M27—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts
- M44—Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts
- M60—Performance Standards for Antifungal Susceptibility Testing of Yeasts (supplement for M27 and M44)
- M38—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi
- M51—Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi
- M61—Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi (supplement for M38 and M51)

M23 is an important foundation guideline that supports these susceptibility testing documents. M23’s purpose is to provide guidance on the data submitted by sponsors and the procedures followed by the CLSI Subcommittee on AST to establish or revise QC ranges and susceptibility testing breakpoints for inclusion in CLSI documents. The process for determining breakpoints and QC ranges for antifungal agents is broadly the same as for the antibacterial agents, and the principles described in M23 also apply to antifungal agents.

This guideline recognizes that submissions may be made by a wide variety of organizations or individuals and that it is important to ensure the same processes are followed regardless of the data source. Nevertheless, it also recognizes that the extent of the data that can be provided to support new or revised breakpoints may vary significantly due to factors that include, but are not limited to, the age of the antimicrobial agent and whether the sponsor has access to raw data or only published data.
M23, 5th ed.

Essential Information

Content in this guideline marked with an asterisk (*) describes essential information required for review by the CLSI Subcommittee on AST. All chapters and subchapters without an asterisk describe additional information that may be supplied if available and that may be useful in supporting the selection of QC ranges and susceptibility testing breakpoints.

Overview of Changes

This guideline replaces the previous edition of the approved guideline, M23, 4th ed., published in 2016. Several changes were made in this edition, including:

- Deleted Subchapter 4.1.3 on publication of breakpoints that are different from those approved by the US Food and Drug Administration
- Added a new subchapter (Subchapter 4.4) that describes a new process for periodically reviewing established breakpoints

NOTE: The content of this guideline is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

Key Words

Antimicrobial agents, standard dilution methods for bacteria that grow aerobically, standard disk diffusion test, standard reference method for anaerobes, susceptibility testing
Subcommittee on Antimicrobial Susceptibility Testing Mission Statement

The Subcommittee on Antimicrobial Susceptibility Testing is composed of representatives from the professions, government, and industry, including microbiology laboratories, government agencies, health care providers and educators, and pharmaceutical and diagnostic microbiology industries. Using the CLSI voluntary consensus process, the subcommittee develops standards that promote accurate antimicrobial susceptibility testing and appropriate reporting.

The mission of the Subcommittee on Antimicrobial Susceptibility Testing is to:

- Develop standard reference methods for antimicrobial susceptibility tests.
- Provide quality control parameters for standard test methods.
- Establish breakpoints for the results of standard antimicrobial susceptibility tests and provide epidemiological cutoff values when breakpoints are not available.
- Provide suggestions for testing and reporting strategies that are clinically relevant and cost-effective.
- Continually refine standards and optimize detection of emerging resistance mechanisms through development of new or revised methods, breakpoints, and quality control parameters.
- Educate users through multimedia communication of standards and guidelines.
- Foster a dialogue with users of these methods and those who apply them.

The ultimate purpose of the subcommittee’s mission is to provide useful information to enable laboratories to assist the clinician in the selection of appropriate antimicrobial therapy for patient care. The standards and guidelines are meant to be comprehensive and to include all antimicrobial agents for which the data meet established CLSI guidelines. The values that guide this mission are quality, accuracy, fairness, timeliness, teamwork, consensus, and trust.
Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters

Chapter 1: Introduction

This chapter includes:

- Guideline’s scope and applicable exclusions
- Background information pertinent to the guideline’s content
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the guideline
- Abbreviations and acronyms used in the guideline

1.1 Scope

This guideline provides direction for determining breakpoints and QC parameters for antimicrobial agents that have a direct action on microorganisms. The intended audience includes sponsors (e.g., antimicrobial agent manufacturers) planning to submit data to establish or revise QC ranges and susceptibility testing breakpoints and interpretive categories for inclusion in CLSI susceptibility testing documents. The methods described do not apply to:

- Slow-growing mycobacteria, for which specific guidance is available (see CLSI document M24[12])
- Antimicrobial agents formulated for direct administration to skin or mucous membranes or for inhalation
- Antimicrobial agents that are intended to exert activity within the gut lumen

Guidance presented in M23 applies only to CLSI procedures and documents.

1.2 Background

Susceptibility testing breakpoints, interpretive categories, and QC parameters are established by the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) after comprehensive review of all available relevant data. This guideline describes the procedures to be followed by the CLSI Subcommittee on AST and by sponsors intending to submit data to facilitate timely review and decision-making processes. Data requirements to support setting new breakpoints and QC parameters and amendments to existing breakpoints are described.

The CLSI Subcommittee on AST has developed standardized methods that make it possible for laboratories to perform reliable and meaningful broth dilution and disk diffusion susceptibility testing of fungi (see CLSI documents M27,6 M38,9 M44,7 and M51[10]). The process for determining breakpoints, interpretive categories, and QC ranges for antifungal agents is broadly the same as for the antibacterial agents. Thus, it may be assumed that the principles described in this guideline apply equally to antifungal agents. For this reason, the guideline refers to antimicrobial agents throughout. Where reference is made to the CLSI Subcommittee on AST, in most instances the same applies to the CLSI Subcommittee on Antifungal...