This standard provides protocols and related quality control parameters for antimicrobial susceptibility testing of mycobacteria, *Nocardia* spp., and other aerobic actinomycetes.

A standard for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Susceptibility Testing of Mycobacteria, *Nocardia* spp., and Other Aerobic Actinomycetes

Gail L. Woods, MD
Nancy L. Wengenack, PhD, D(ABMM)
Grace Lin, MS
Barbara A. Brown-Elliott, MS, MT(ASCP)SM
Daniela Maria Cirillo, MD, PhD
Patricia S. Conville, MS, MT(ASCP)
Edward P. Desmond, PhD, D(ABMM)
Scott B. Killian, BS
Nicole M. Parrish, PhD, MHS, D(ABMM)
Richard Pfeltz, PhD
Elvira Richter, PhD
John D. Turnidge, MD, BS, FRACP, FRCPA, FASM

Abstract

Clinical and Laboratory Standards Institute standard M24—*Susceptibility Testing of Mycobacteria, Nocardia* spp., and Other Aerobic Actinomycetes* includes susceptibility testing procedures for *Mycobacterium tuberculosis* complex (MTBC), clinically significant slowly and rapidly growing mycobacterial species, *Nocardia* spp., and other aerobic actinomycetes. Also included in this standard are recommendations for selecting agents for first-line and second-line drug testing, organism group–specific methodologies, reporting recommendations, and organism quality control criteria. Recommendations regarding agent selection for testing mycobacteria are based primarily on published guidelines. For testing MTBC, M24 recognizes agar proportion as the reference methodology on which all other methodologies are based. In addition, this standard includes recommendations for using commercial broth susceptibility methods with shorter incubation times, which are now in widespread use for MTBC susceptibility testing, and information on molecular methods for detecting drug resistance and their integration with culture-based methods.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Committee Membership

Consensus Council

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis J. Ernst, MT(ASCP), NCPT(NCCT)</td>
<td>Chairholder</td>
<td>Center for Phlebotomy Education</td>
<td>USA</td>
</tr>
<tr>
<td>Mary Lou Gantzer, PhD, FACB</td>
<td>Vice-Chairholder</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>J. Rex Astles, PhD, FACB, DABCC</td>
<td>Centers for Disease Control and Prevention</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Lucia M. Berte, MA, MT(ASCP)SBB, DLM, CQA(ASQ)CMQ/OE</td>
<td>Laboratories Made Better!</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Karen W. Dyer, MT(ASCP), DLM</td>
<td>Centers for Medicare & Medicaid Services</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Thomas R. Fritsche, MD, PhD, FCAP, FIDSA</td>
<td>Marshfield Clinic</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Loralie J. Langman, PhD, DABCC, FACB, F-ABFT</td>
<td>Mayo Clinic</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>James R. Petisce, PhD</td>
<td>BD Diagnostic Systems</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>

Document Development Committee on Antimycobacterial Susceptibility Testing

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gail L. Woods, MD</td>
<td>Chairholder</td>
<td>Arkansas Children's Hospital</td>
<td>USA</td>
</tr>
<tr>
<td>Nancy L. Wengenack, PhD, D(ABMM)</td>
<td>Vice-Chairholder</td>
<td>Mayo Clinic</td>
<td>USA</td>
</tr>
<tr>
<td>Grace Lin, MS</td>
<td>Committee Secretary</td>
<td>California Department of Public Health</td>
<td>USA</td>
</tr>
<tr>
<td>Lynette Y. Berkeley, PhD, MT(ASCP)</td>
<td></td>
<td>FDA Center for Drug Evaluation and Research</td>
<td>USA</td>
</tr>
<tr>
<td>Barbara A. Brown-Elliott, MS, MT(ASCP)SM</td>
<td></td>
<td>University of Texas Health Science Center at Tyler</td>
<td>USA</td>
</tr>
<tr>
<td>Daniela Maria Cirillo, MD, PhD</td>
<td>WHO Collaborating Centre and TB Supranational Reference Laboratory</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Patricia S. Conville, MS, MT(ASCP)</td>
<td>FDA Center for Devices and Radiological Health</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Edward P. Desmond, PhD, D(ABMM)</td>
<td>California Department of Public Health</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Scott B. Killian, BS</td>
<td>Thermo Fisher Scientific</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Beverly Metchock, DrPH, D(ABMM)</td>
<td>Centers for Disease Control and Prevention</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Nicole M. Parrish, PhD, MHS, D(ABMM)</td>
<td>Johns Hopkins Hospital - Pathology</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Richard Pfeltz, PhD</td>
<td>BD Life Sciences</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Elvira Richter, PhD</td>
<td>Laboratory Limbach</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>John D. Turnidge, MD, BS, FRACP, FRCPA, FASM</td>
<td>University of Adelaide</td>
<td>Australia</td>
<td></td>
</tr>
</tbody>
</table>

Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcy L. Hackenbrack, MCM, M(ASCP)</td>
<td>Project Manager</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Megan L. Tertel, MA, ELS</td>
<td>Editorial Manager</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Catherine E.M. Jenkins</td>
<td>Editor</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgment for the Expert Panel on Microbiology

CLSI, the Consensus Council, and the Document Development Committee on Antimycobacterial Susceptibility Testing gratefully acknowledge the Expert Panel on Microbiology for serving as technical advisors and subject matter experts during the development of this standard.

Expert Panel on Microbiology

Richard B. Thomson, Jr., PhD, D(ABMM), FAAM
Chairholder
Evanston Hospital, NorthShore University HealthSystem
USA

Jean B. Patel, PhD, D(ABMM)
Vice-Chairholder
Centers for Disease Control and Prevention
USA

Kevin Alby, PhD, D(ABMM)
University of Pennsylvania Health System
USA

Lynette Y. Berkeley, PhD, MT(ASCP)
FDA Center for Drug Evaluation and Research
USA

Carey-Ann Burnham, PhD, D(ABMM)
Washington University School of Medicine
USA

Karissa Culbreath, PhD, D(ABMM)
University of New Mexico Department of Pathology
USA

German Esparza, BSc
Proasecal SAS
Colombia

Margie Morgan, PhD, D(ABMM)
Cedars-Sinai Medical Center
USA

Mark G. Papich, DVM, MS
College of Veterinary Medicine, North Carolina State University
USA

David H. Pincus, MS, RM/SM(NRCM), SM(ASCP)
bioMérieux, Inc.
USA

Audrey N. Schuetz, MD, MPH, D(ABMM)
Mayo Clinic
USA

Ribhi M. Shawar, PhD, D(ABMM)
FDA Center for Devices and Radiological Health
USA

Acknowledgment

CLSI, the Consensus Council, and the Document Development Committee on Antimycobacterial Susceptibility Testing gratefully acknowledge the following volunteers for their important contributions to the development of this standard:

Joan Miquel Balada-Llasat, PharmD, PhD, D(ABMM)
Ohio State University Wexler Medical Center
USA

Pennan Barry, MD, MPH
California Department of Public Health
USA

Kone Kaniga, PhD
Janssen Research and Development
USA

Janice Washington, MT(ASCP), MPH
FDA Center for Devices and Radiological Health
USA
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii
Chapter 1: Introduction .. 1
 1.1 Scope ... 1
 1.2 Background .. 2
 1.3 Standard Precautions .. 3
 1.4 Terminology ... 3
Chapter 2: Antimicrobial Susceptibility Testing Process ... 9
Chapter 3: Antimicrobial Susceptibility Testing of M. tuberculosis complex 11
 3.1 Agar Proportion Method .. 14
 3.2 Commercial Broth Systems With Shorter Incubation Times ... 21
 3.3 Broth Microdilution Method for Determining M. tuberculosis complex Minimal Inhibitory Concentrations .. 29
 3.4 Molecular Detection of Drug Resistance ... 30
Chapter 4: Nontuberculous Mycobacteria ... 37
 4.1 Antimycobacterial Susceptibility Testing of Slowly Growing Nontuberculous Mycobacteria .. 38
 4.2 Antimycobacterial Susceptibility Testing of Rapidly Growing Mycobacteria 40
 4.3 Broth Microdilution Testing Procedure .. 40
Chapter 5: Nocardia spp. and Other Aerobic Actinomycetes .. 45
 5.1 Preparing the Inoculum ... 47
 5.2 Inoculating and Incubating the Panels .. 48
 5.3 Confirming Sulfonamide Results and Verifying Appropriate Organism Concentration for Nocardia spp. .. 49
 5.4 Reading and Interpreting Broth Microdilution Panels .. 49
 5.5 Reading and Interpreting Disk Diffusion Test for Nocardia spp .. 51
 5.6 Reporting Results .. 52
Chapter 6: Process Management: Quality Control and Quality Assurance 53
 6.1 Quality Control ... 53
 6.2 New Method Implementation .. 60
Chapter 7: Conclusion .. 62
Chapter 8: Supplemental Information .. 62

References ... 63

Additional Resources ... 70

Appendix A. Role of Pharmacokinetics-Pharmacodynamics in Tuberculosis Management 71

Appendix B. Antituberculous Drugs and Their Recommended Concentrations in Middlebrook 7H10 and 7H11 Agar Media and LJ Medium .. 78
Contents (Continued)

Appendix C. Drugs Available for *Mycobacterium tuberculosis* complex Susceptibility Testing Using Regulatory Organization–Cleared or –Approved Commercial Short-Incubation Liquid Media Systems and Their Equivalence in the Agar Proportion Method ...80

Appendix D. Suggested Approach to *Mycobacterium tuberculosis* complex Susceptibility Testing in Resource-Limited Countries ..81

Appendix E. Example Illustrating Drug Calculation for Meropenem Trihydrate82

Appendix F. Stock, Working, and Final Concentrations of Antituberculous Drug Solutions for Agar Proportion ..83

Appendix G. Preparing and Plating Middlebrook 7H10 and 7H11 Agar Media85

Appendix H. Preparing Middlebrook 7H10 and 7H11 Agar Media With Antituberculous Agent–Containing Disks ..86

Appendix I. Preparing Middlebrook 7H10 and 7H11 Agar Media With Liquid Drug.......87

Appendix J. 0.5 McFarland Barium Sulfate Turbidity Standard ..88

Appendix K. Determining Percentage of Resistance ..89

Appendix L. Procedure for Verifying the Inoculum Density for Broth Microdilution Susceptibility Testing of Mycobacteria ...91

Appendix M. Agar Disk Elution Method for *Mycobacterium haemophilum*92

Appendix O. Clarithromycin Susceptibility or Resistance Reporting in Select Rapidly Growing Mycobacteria Based on *erm* Gene Type ...95

The Quality Management System Approach ..96

Related CLSI Reference Materials ..97

This is a preview of "CLSI M24-3E". Click here to purchase the full version from the ANSI store.
Foreword

This standard includes recommendations for testing *Mycobacterium tuberculosis* complex (MTBC), certain nontuberculous mycobacteria (NTM), *Nocardia* spp., and other aerobic actinomycetes. Currently, sufficient data exist to support recommendations for antimicrobial susceptibility testing (AST) of MTBC, *Mycobacterium avium* complex (MAC), *M. kansasii*, *M. marinum*, the rapidly growing mycobacteria (RGM), *Nocardia* spp., and certain other aerobic actinomycetes. Breakpoints for some NTMs, *Nocardia* spp., and other aerobic actinomycetes are based on organism population distributions, clinical data, breakpoints used for other organisms, and the experience of experts in the field. M24 was revised in response to new developments in mycobacterial susceptibility testing and comments from laboratorians who perform routine mycobacterial and/or aerobic actinomycete testing. Additional revisions are anticipated as more relevant data become available.

Overview of Changes

This standard replaces the previous edition of the approved standard, M24-A2, published in 2011. Several changes were made in this edition, including:

- Removed information related to the short-incubation, liquid-radiometric testing system, because this system is no longer available
- Expanded the description of molecular testing for both MTBC and NTM to determine antimicrobial susceptibility or resistance
 - For MTBC, Table 3 (Considerations for Molecular or Repeat Testing After Initial Testing on MTBC Using a Commercial Short-Incubation Broth System) and text are included to describe the integration of molecular and culture-based test results for the best possible prediction of the expected drug efficacy.
 - For NTM, text is included to describe integration of molecular techniques to assist in determining efficacy of macrolides and amikacin in the treatment of infections caused by MAC and various RGM.
- Added a description of recently discovered challenges to MTBC AST accuracy with use of rapid broth systems and/or the agar proportion method, particularly limited sensitivity in detection of low-level resistance to rifampin and ethambutol
- Added information in Appendix A regarding the relationship of pharmacokinetics and pharmacodynamics in determining breakpoints and interpretive criteria
- Updated all breakpoint and quality control tables and moved them to a newly created informational supplement, CLSI document M62

NOTE: The content of this standard is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

Key Words

Aerobic actinomycetes, antimicrobial susceptibility testing, antimycobacterial drugs, antituberculous drugs, *Mycobacterium tuberculosis* complex, *Nocardia* spp., nontuberculous mycobacteria
Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes

Chapter 1: Introduction

This chapter includes:

- Standard’s scope and applicable exclusions
- Background information pertinent to the standard’s content
- Standard precautions information
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the standard
- Abbreviations and acronyms used in the standard

1.1 Scope

M24 includes antimicrobial susceptibility testing (AST) protocols for three major categories of mycobacterial species:

- Mycobacterium tuberculosis complex (MTBC)
- The slowly growing nontuberculous mycobacteria (SGM)
- The rapidly growing mycobacteria (RGM)

Also provided are:

- AST recommendations for Nocardia spp. and other aerobic actinomycetes
- Guidance on selecting first-line and, for some organisms, second-line antimicrobial agents for testing and reporting
- Instructions for performing the standard agar proportion (AP) method for MTBC and broth microdilution for mycobacteria and aerobic actinomycetes
- Molecular methods for detecting mutations associated with MTBC drug resistance
- QC protocols for each organism category

Testing and reporting recommendations and QC procedures apply to both reference methods and commercial shorter-incubation broth systems that have been regulatory organization cleared or approved for testing MTBC. This standard does not cover identification methods, nor does it provide an in-depth discussion of molecular test procedures. This standard is intended for use by hospital, public health, and referral laboratories that perform AST on MTBC, nontuberculous mycobacteria (NTM), Nocardia spp., and/or other aerobic actinomycetes.