This document describes methods for recording and analysis of antimicrobial susceptibility test data, consisting of cumulative and ongoing summaries of susceptibility patterns of clinically significant microorganisms.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Process document.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition

Volume 34 Number 2

Janet A. Hindler, MCLS, MT(ASCP)
Michael Barton, PharmD
Sharon M. Erdman, PharmD
Alan T. Evangelista, PhD, D(ABMM)
Stephen G. Jenkins, PhD, D(ABMM), F(AAM)
Judith Johnston, MS
James S. Lewis II, PharmD
Dyan Luper, BS, MT(ASCP)SM, MB
Ronald N. Master, MS, SM(AAM)
Graeme Nimmo, MBBS, MSc, MPH, MD
John Stelling, MD, MPH

Abstract

Susceptibility statistical data, consisting of the cumulative and ongoing summary of the patterns of antimicrobial susceptibility of clinically important microorganisms, are important to the practice of medicine on several levels.

If the methods used to create, record, and analyze the data are not reliable and consistent, many of the most important applications and benefits of the data will not be realized. Clinical and Laboratory Standards Institute document M39-A4—Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition is an attempt 1) to develop guidelines for clinical laboratories and data analysis software providers for the routine generation and storage of susceptibility data, and for the compilation of susceptibility statistics; and 2) to provide suggestions to clinical laboratories and clinicians for effective use of their cumulative susceptibility statistics.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Copyright ©2014 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Proposed Guideline
December 2000

Approved Guideline
May 2002

Approved Guideline—Second Edition
November 2005

Approved Guideline—Third Edition
February 2009

Approved Guideline—Fourth Edition
January 2014

ISBN 1-56238-899-1 (Print)
ISBN 1-56238-950-5 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Committee Membership

Consensus Committee on Microbiology

Richard B. Thomson, Jr., PhD, D(ABMM), FAAM
Chairholder
Evanston Hospital, NorthShore University HealthSystem
Evanston, Illinois, USA

John H. Rex, MD, FACP
Vice-Chairholder
AstraZeneca Pharmaceuticals
Waltham, Massachusetts, USA

Thomas R. Fritsche, MD, PhD
Marshfield Clinic
Marshfield, Wisconsin, USA

Committee Membership

Consensus Committee on Microbiology

Jean B. Patel, PhD, D(ABMM)
Chairholder
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Franklin R. Cockerill III, MD
Vice-Chairholder
Mayo College of Medicine
Rochester, Minnesota, USA

Jeff Alder, PhD
Bayer HealthCare
Whippany, New Jersey, USA

Patricia A. Bradford, PhD
AstraZeneca Pharmaceuticals
Waltham, Massachusetts, USA

George M. Eliopoulos, MD
Beth Israel Deaconess Medical Center
Boston, Massachusetts, USA

Patrick R. Murray, PhD
BD Diagnostics
Sparks, Maryland, USA

Jean B. Patel, PhD, D(ABMM)
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Kerry Snow, MS, MT(ASCP)
FDA Center for Drug Evaluation and Research
Silver Spring, Maryland, USA

Dwight J. Hardy, PhD
University of Rochester Medical Center
Rochester, New York, USA

Janet A. Hindler, MCLS, MT(ASCP)
UCLA Medical Center
Los Angeles, California, USA

Stephen G. Jenkins, PhD, D(ABMM), F(AAM)
New York Presbyterian Hospital
New York, New York, USA

James S. Lewis II, PharmD
Oregon Health & Science University
Portland, Oregon, USA

Linda A. Miller, PhD
GlaxoSmithKline
Collegeville, Pennsylvania, USA

John D. Turnidge, MD
SA Pathology at Women’s and Children’s Hospital
North Adelaide, Australia

Jeffrey L. Watts, PhD, RM(NRCP)
Zoetis, Inc.
Kalamazoo, Michigan, USA

Nancy L. Wengenack, PhD, D(ABMM), FIDSA
Mayo Clinic
Rochester, Minnesota, USA

Barbara L. Zimmer, PhD
Siemens Healthcare Diagnostics Inc.
West Sacramento, California, USA

Melvin P. Weinstein, MD
Robert Wood Johnson Medical School
New Brunswick, New Jersey, USA

Barbara L. Zimmer, PhD
Siemens Healthcare Diagnostics Inc.
West Sacramento, California, USA

This is a preview of "CLSI M39-A4". Click here to purchase the full version from the ANSI store.
Working Group on Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data

Janet A. Hindler, MCLS, MT(ASCP)
Chairholder
UCLA Medical Center
Los Angeles, California, USA

Michael Barton, PharmD
Health Catalyst
Salt Lake City, Utah, USA

Sharon M. Erdman, PharmD
Purdue University
College of Pharmacy
Indianapolis, Indiana, USA

Alan T. Evangelista, PhD, D(ABMM)
Tenet Healthcare
Philadelphia, Pennsylvania, USA

Stephen G. Jenkins, PhD, D(ABMM), F(AAM)
New York Presbyterian Hospital
New York, New York, USA

Judith Johnston, MS
Carmichael, California, USA

James S. Lewis II, PharmD
Oregon Health & Science University
Portland, Oregon, USA

Dyan Luper, BS, MT(ASCP)SM, MB
BD Diagnostic Systems
Sparks, Maryland, USA

Ronald N. Master, MS, SM(AAM)
Quest Diagnostics Nichols Institute
Chantilly, Virginia, USA

Graeme Nimmo, MBBS, MSc, MPH, MD
Queensland Health Pathology and Scientific Services
Herston, Australia

John Stelling, MD, MPH
Brigham and Women’s Hospital-Microbiology
Boston, Massachusetts, USA

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Luann Ochs, MS
Senior Vice President – Operations

Tracy A. Dooley, MLT(ASCP)
Staff Liaison

Megan L. Tertel, MA
Editor

Joanne P. Christopher, MA
Assistant Editor
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. ix

1 Scope .. 1

2 Introduction .. 1

3 Standard Precautions .. 2

4 Terminology ... 2

 4.1 Definitions .. 2

 4.2 Abbreviations and Acronyms ... 5

5 Information System Design ... 6

 5.1 Data Export or Transmission .. 6

 5.2 Desirable Attributes of the Data Analysis System ... 7

 5.3 Patient Demographic Information .. 7

 5.4 Specimen Information .. 7

 5.5 Organism Information .. 8

 5.6 Antimicrobial Susceptibility Test Information ... 8

Part I. The Routine Cumulative Antibiogram ... 9

6 Data Analysis ... 9

 6.1 Data Verification ... 9

 6.2 Facility .. 10

 6.3 Frequency .. 10

 6.4 Isolates .. 10

 6.5 Antimicrobial Agents .. 11

 6.6 Calculations .. 13

 6.7 Validation of Calculations .. 16

 6.8 Supplemental Analyses and Selection Criteria Options for the Routine Cumulative
 Antibiogram .. 18

7 Data Presentation ... 20

 7.1 Items to Consider in Constructing the Table .. 20

 7.2 Items to Consider Within Specific Tables .. 20

 7.3 Other Presentation Options ... 22

8 Use of Cumulative Antimicrobial Susceptibility Reports .. 24

 8.1 Use of the Report .. 24

 8.2 Distribution of the Report ... 24

9 Limitations of Data, Data Analysis, and Data Presentation ... 25

 9.1 Culturing Practices .. 25

 9.2 Influence of Small Numbers of Isolates ... 25

 9.3 Comparing Results of Individual Antimicrobial Agent Results 26

 9.4 Identification of New Patterns of Resistance .. 26
Contents (Continued)

10 Statistical Considerations ... 26
 10.1 Confidence Intervals ... 27
 10.2 Statistical Significance of Changes in Susceptibility Rates .. 27
 10.3 Use and Limitations of Statistical Methods ... 28

Part II. The Enhanced Antibiogram .. 28

11 Stratifying Cumulative Antibiogram Data by Various Parameters .. 28
 11.1 Examples of Selection Criteria for Supplemental Analyses 28

12 Supplemental Analyses of Multidrug-Resistant Organisms .. 29
 12.1 Simple Listing of the Percentage of Resistant Organisms .. 29
 12.2 Supplemental Analyses of Multidrug-Resistant Organisms 29

13 Examining Percent Susceptible for Combinations of Antimicrobial Agents 30

14 Analysis of Susceptibility Profiles of Select Organisms .. 31

15 Calculating Percent Susceptible on Select Groups of Organisms .. 31

16 Graphic Presentation of Percent Susceptible Data to Illustrate Trends in Susceptibility 31
 16.1 Emerging Resistance Trends... 31

17 Local Cumulative Antibiograms vs External Antibiograms (eg, Data From External
 Surveillance Programs) .. 32
 17.1 Local Cumulative Antibiograms vs Data From External Surveillance Programs 32
 17.2 The Use of Local Cumulative Antibiograms ... 32
 17.3 The Use of Data From External Surveillance Programs ... 32
 17.4 Some Situations in Which Data From External Surveillance Programs May Be
 Useful .. 33
 17.5 Considerations When Using Data From External Surveillance Programs to Guide
 Local Empirical Therapy Recommendations .. 33

References ... 35

Additional References ... 36

Appendix A. Suggestions for Confirmation of Resistant (R), Intermediate (I), or Nonsusceptible
 (NS) Antimicrobial Susceptibility Test Results and Organism Identification 40

Appendix B. Rationale Behind the “First Isolate per Patient” Analysis Recommendation 44

Appendix C. Example of Using a Line Listing to Verify Susceptibility Rates Determined by the
 Analysis Software ... 47

Appendix D. Examples of Supplemental Analyses – Stratifying Cumulative Antibiogram Data by
 Various Parameters .. 49

Appendix E1. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents
 Listed Alphabetically (Hypothetical Data) .. 51
Contents (Continued)

Appendix E2. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents Listed by Class (Hypothetical Data) ...52

Appendix F. Examples of Graphs to Illustrate Trends in Susceptibility...53

Appendix G. Steps for Presenting Local Cumulative Antibiogram Report to Health Care Professionals ...56

Appendix H. Statistical Methods for Examining Percent Susceptible...60

Appendix I. Glossaries of β-Lactams and Non–β-Lactams: Class and Subclass Designation and Generic Name, and Abbreviations/Routes of Administration/Drug Class for Antimicrobial Agents ...67

Appendix J. Intrinsic Resistance..73

The Quality Management System Approach ...78

Related CLSI Reference Materials ..80
Foreword

The antimicrobial susceptibility data generated from testing individual patients’ microbial isolates are helpful if cumulative data from such tests are assembled and appropriately reported at regular intervals. For the cumulative reports to be useful and comparable with those of previous years or other institutions, data must be obtained and presented in a clear and consistent manner.

The primary aim of this document is to guide the preparation of cumulative antimicrobial susceptibility test data reports that will prove useful to clinicians in the selection of the most appropriate agents for initial empirical antimicrobial therapy. Other analyses of antimicrobial susceptibility test data may also be of significant value to clinicians, infection control personnel, epidemiologists, pharmacists, and others. These reports are often used to support antibiotic stewardship efforts. Several examples are included in M39.

Overview of Changes From M39-A3

Below is a summary of the changes in this document, which supersede the information presented in previous editions of M39. The list includes “major” changes. Other minor or editorial changes that have been made to the general formatting are not listed here.

General

M39 has been reorganized into two parts: Part I describes the routine cumulative antibiogram, and Part II describes what is referred to as the “enhanced antibiogram.” Part II includes suggestions for analyzing and presenting cumulative antibiogram data to answer specific questions about susceptibility patterns in a particular facility. These reports may not be needed on a routine basis.

During this revision, the following sections were updated and relocated to Part II:

Section 6.8.2, Supplemental Analyses of Multidrug-Resistant Organisms (now Section 12)

Section 6.8.3, Additional Data Stratification (now Section 11, Stratifying Cumulative Antibiogram Data by Various Parameters)

Section 6.8.4, Examples of Selection Criteria for Supplemental Analyses (now Section 11.1)

Section 6.8.5, Examining Percent Susceptible for Combinations of Antimicrobial Agents (now Section 13)

Section 7.3.2, Specific Locations (now Section 11, Stratifying Cumulative Antibiogram Data by Various Parameters)

Section 7.3.3, Emerging Resistance Trends (now Section 16.1)

Part I

Section 1, Scope

Added notation that those involved with antibiotic stewardship programs often use cumulative antibiogram data.
Definitions
Added definitions for antimicrobial susceptibility test interpretive categories (susceptible, susceptible-dose dependent, intermediate, resistant, nonsusceptible); line listing of antimicrobial susceptibility test data; multidrug-resistant organism.

Section 6.5.2, Selective Reporting
Expanded section and described a method that could be used to estimate the percent susceptible (%S) for drugs routinely tested but reported selectively.

Section 6.6.1, Changes in Interpretive Breakpoints (previously Section 6.6)
Expanded recommendations for handling changes in interpretive breakpoints and included a table and graphic examples that highlight the changes.

Section 6.6.2, Issues Related to Determining the Interpretation of Minimal Inhibitory Concentration Values (previously Section 6.6.1)
Added an example.

Section 6.8.1, S. pneumoniae
Modified footnotes to Streptococcus pneumoniae example of reporting %S for drugs that have both meningitis and nonmeningitis breakpoints.

Section 6.8.3, Susceptible-Dose Dependent
Added information for reporting antimicrobial agents that have susceptible-dose dependent interpretive criteria.

Section 7.2.1, Organisms
For gram negatives:
Added Klebsiella oxytoca.

Suggested that it may be useful to separate gram-negative organisms into glucose-fermenting and nonglucose-fermenting bacilli in antibiogram tables.

For anaerobes:
Added Bacteroides fragilis group (other than B. fragilis).

Section 7.3.2, Change in Drug Panel During Analysis Period (eg, Antimicrobial Agent Is Removed or Added to Routine Testing Panel)
Added suggestions for analyzing data when drugs included on a specific panel change during analysis period.

Part II
Added, updated, expanded, and relocated information contained in the following sections of the previous edition of M39:

Section 6.8.3, Additional Data Stratification
Section 6.8.4, Examples of Selection Criteria for Supplemental Analyses
Section 6.8.5, Examining Percent Susceptible for Combinations of Antimicrobial Agents

Section 7.3.2, Specific Locations
Section 7.3.3, Emerging Resistance Trends

The following represent substantive additions to the original recommendations:

x
Section 12, Supplemental Analyses of Multidrug-Resistant Organisms
Added suggestions for highlighting multidrug-resistant organisms (MDROs) on a routine cumulative antibiogram report and added example (Klebsiella pneumoniae) of a supplemental report that might be generated for MDROs.

Section 13, Examining Percent Susceptible for Combinations of Antimicrobial Agents
Moved from Part I to Part II, and revised to reflect this change.

Section 14, Analysis of Susceptibility Profiles of Select Organisms
Added new section that describes preparation of a report that lists the numbers/percent of patients who harbored an isolate of a given species with a specific resistance profile.

Section 15, Calculating Percent Susceptible on Select Groups of Organisms
Added new section that describes preparation of a report that lists the %S for all isolates within an organism group.

Section 16, Graphic Presentation of Percent Susceptible Data to Illustrate Trends in Susceptibility
Added examples to include various presentation options.

Section 17, Local Cumulative Antibiograms vs External Antibiograms (eg, Data From External Surveillance Programs)
Added new section that discusses use of local vs surveillance data and when either might be advantageous.

Additional References
Updated references.

Appendix A. Suggestions for Confirmation of Resistant (R), Intermediate (I), or Nonsusceptible (NS) Antimicrobial Susceptibility Test Results and Organism Identification
Imported updated table from CLSI document M100.¹

Appendix C. Example of Using a Line Listing to Verify Susceptibility Rates Determined by the Analysis Software
Updated example data.

Appendix D. Examples of Supplemental Analyses – Stratifying Cumulative Antibiogram Data by Various Parameters
Updated example data.

Appendix E1. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents Listed Alphabetically (Hypothetical Data)
Incorporated suggestion to insert “R” in cells denoting intrinsic resistance for the drug/organism combination.

Appendix E2. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents Listed by Class (Hypothetical Data)
Incorporated suggestion to insert “R” in cells denoting intrinsic resistance for the drug/organism combination.

Appendix F. Examples of Graphs to Illustrate Trends in Susceptibility
Added examples to include various presentation options.
Appendix G. Steps for Presenting Local Cumulative Antibiogram Report to Health Care Professionals
Updated primary recommendations for analysis and data to consider highlighting.

Appendix I. Glossaries of β-Lactams and Non-β-Lactams: Class and Subclass Designation and Generic Name, and Abbreviations/Routes of Administration/Drug Class for Antimicrobial Agents
Imported updated table from CLSI document M100.1

Appendix J. Intrinsic Resistance
Imported updated table from CLSI document M100.1

Key Words
Antibiogram, antimicrobial agent, cumulative antibiogram, epidemiology, resistance
Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition

1 Scope

The recommendations set forth in this document are intended to be used by individuals involved in the following:

- Analyzing and presenting antimicrobial susceptibility test data (eg, clinical microbiologists, pharmacists, physicians)
- Using cumulative antimicrobial susceptibility test data to make clinical decisions and/or participate in antibiotic stewardship programs (ASPs) (eg, clinical microbiologists, infectious disease specialists and other clinicians, infection control practitioners, pharmacists, epidemiologists, other health care personnel, and public health officials)
- Designing information systems for the storage and analysis of antimicrobial susceptibility test data (eg, LIS vendors, manufacturers of diagnostic products that include epidemiology analysis software, and manufacturers of epidemiology analysis or surveillance software)

The cumulative antimicrobial susceptibility report generated, according to recommendations presented in this guideline, may not reveal some trends in emerging resistance, and thus cannot substitute for the careful analysis of all susceptibility data derived from examining and/or analyzing all antimicrobial susceptibility test results for individual patient management. For reports intended for other purposes (eg, emergence of resistance during therapy, empirical therapy of subsequent infections), other inclusion criteria may be appropriate.

2 Introduction

This guideline presents specific recommendations for the collection, analysis, and presentation of cumulative antimicrobial susceptibility test data. Among the issues addressed are the way in which multiple isolates from the same patient should be handled, the species included or combined in a statistic, the frequency of data analysis, and the format for data presentation. This guideline also identifies additional data analysis and presentation options that may be useful to certain clinicians for specialized applications.

It is important to recognize that many of the specific recommendations presented here (eg, inclusion of only the first isolate of a given species from an individual patient during the analysis period) have been made with the primary aim of guiding clinicians in the selection of initial empirical antimicrobial therapy for infections.

The following recommendations have been made with the primary aim of preparing a report to guide clinicians in the selection of empirical antimicrobial therapy for initial infections:

- Analyze and present a cumulative antibiogram report at least annually.
- Include only final, verified test results.
- Include only species with testing data for ≥30 isolates (see Sections 6.4 and 7.2.2).
- Include only diagnostic (not surveillance) isolates (see Section 6.4).