Establishing Molecular Testing in Clinical Laboratory Environments; Approved Guideline

This guideline provides comprehensive guidance for planning and implementation of molecular diagnostic testing, including strategic planning, regulatory requirements, implementation, quality management, and special considerations for the subspecialties of molecular genetics, infectious diseases, oncology, and pharmacogenetics.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute
Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Establishing Molecular Testing in Clinical Laboratory Environments; Approved Guideline

Volume 31 Number 21

Leslie Hall, MMSc, M(ASCP)
Jean Amos Wilson, PhD, FACMG, CGMB
Kathy Bernard, MSc, ARM(CCM)
Michele P. Carbone, MS, CLS(ASCP) SH
Haja Sittana El Mubarak, PhD
Stephanie E. Hallam, PhD, FACMG, MBA
Roger D. Klein, MD, JD, FCAP
Preeti Pancholi, PhD, D(ABMM)
Michele M. Schoonmaker, PhD
Elaine B. Spector, PhD, FACMG
Patrik Vitazka, MD, PhD
Jerry Boonyaratankornkit, MS
Bonita Bryant, MT(ASCP), CLSpMB(NCA)
Jianli Dong, MD, PhD, FACMG
Rajyasree Emmadi, MD, FCAP
Manohar R. Furtado, PhD
Felicitas Lacbawan, MD, FCAP, FACMG
Francisco Martinez-Murillo, PhD
Ted E. Schutzbank, PhD, D(ABMM)
Rangaraj Selvarangan, BVSc, PhD, D(ABMM)
Venkatakrishna Shyamala, PhD
Laurina O. Williams, PhD, MPH
Alan Wu, PhD, DABCC

Abstract

Clinical and Laboratory Standards Institute document MM19-A—Establishing Molecular Testing in Clinical Laboratory Environments; Approved Guideline provides a framework for decision making and implementation of clinical molecular diagnostics, and is intended for those in established clinical laboratories that are implementing a molecular program for the first time. When implementing any diagnostic test for patient care, many elements should be addressed before the test is brought “online.” This document focuses on the path of workflow, including laboratory safety and the quality management system, with emphasis on considerations for molecular diagnostics. An organized approach to strategic planning with SWOT (strengths, weaknesses, opportunities, and threats) is presented. Relevant regulatory requirements and the implementation plan are discussed in detail.

Importantly, separate sections are devoted to each of the following subspecialty areas: heritable diseases, oncology and malignant hematology, pharmacogenomics, and infectious diseases. Each of these sections addresses special considerations for molecular testing for each subspecialty.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Committee Membership

Consensus Committee on Molecular Methods

Roberta M. Madej, CLS, MS, MBA
Chairholder
Cepheid
Sunnyvale, California, USA

Lisa Kalman, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia, USA

Zivana Tezak-Fragale, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Frederick S. Nolte, PhD
Vice-Chairholder
Medical University of South Carolina
Charleston, South Carolina, USA

Penny Keller, BS, MP(ASCP)
Centers for Medicare & Medicaid Services
Baltimore, Maryland, USA

Jean Amos Wilson, PhD, FACMG, CGMB
Berkeley HeartLab, Inc.
Alameda, California, USA

Stephen P. Day, PhD
Hologic, Inc.
Madison, Wisconsin, USA

Deborah Payne, PhD
APP-Uni-Path
Denver, Colorado, USA

Emily S. Winn-Deen, PhD
Illumina, Inc.
San Diego, California, USA

Document Development Committee on Establishing Molecular Testing in Clinical Laboratory Environments

Leslie Hall, MMSc, M(ASCP)
Co-Chairholder
Mayo Clinic
Rochester, Minnesota, USA

Roger D. Klein, MD, JD, FCAP
BloodCenter of Wisconsin
Milwaukee, Wisconsin, USA

Staff
Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Jean Amos Wilson, PhD,
FACMG, CGMB
Co-Chairholder
Berkeley HeartLab, Inc.
Alameda, California, USA

Preeti Pancholi, PhD, D(ABMM)
The Ohio State University Medical Center
Columbus, Ohio, USA

Luann Ochs, MS
Vice President, Standards Development

Kathy Bernard, MSc, ARM(CCM)
National Microbiology Laboratory, PHAC
Winnipeg, Canada

Tracy A. Dooley, BS, MLT(ASCP)
Staff Liaison

Michele P. Carbone, MS,
CLS(ASCP) SH
Redondo Beach, California, USA

Michele M. Schoonmaker, PhD
Cepheid
Sunnyvale, California, USA

Marie Hackenbrack, MCM,
M(ASCP), BA
Project Manager

Haja Sittana El Mubarak, PhD
FDA Center for Devices and Radiological Health
Silver Spring, Maryland, USA

Elaine B. Spector, PhD, FACMG
University of Colorado Denver,
School of Medicine
Aurora, Colorado, USA

Megan P. Larrisey, MA
Editor

Stephanie E. Hallam, PhD,
FACMG, MBA
Good Start Genetics
Boston, Massachusetts, USA

Patrik Vitazka, MD, PhD
Merck Sharp & Dohme Idea, Inc.
Bratislava, Slovakia
Acknowledgment

CLSI and the Consensus Committee on Molecular Methods gratefully acknowledge the following individuals for their help in preparing this document:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerry Boonyaratanakornkit, MS</td>
<td>Franciso Martinez-Murillo, PhD</td>
</tr>
<tr>
<td>AcroMetrix Corporation</td>
<td>FDA Center for Devices and Radiological Health</td>
</tr>
<tr>
<td>Benicia, California, USA</td>
<td>Silver Spring, Maryland, USA</td>
</tr>
<tr>
<td>Bonita Bryant, MT(ASCP), CLSpMB(NCA)</td>
<td>Ted E. Schutzbank, PhD, D(ABMM)</td>
</tr>
<tr>
<td>Access Genetics</td>
<td>Covance Central Laboratory Services</td>
</tr>
<tr>
<td>Minneapolis, Minnesota, USA</td>
<td>Indianapolis, Indiana, USA</td>
</tr>
<tr>
<td>Jianli Dong, MD, PhD, FACMG</td>
<td>Rangaraj Selvarangan, BVSc, PhD, D(ABMM)</td>
</tr>
<tr>
<td>University of Texas Medical Branch</td>
<td>Children’s Mercy Hospital</td>
</tr>
<tr>
<td>Galveston, Texas, USA</td>
<td>Kansas City, Missouri, USA</td>
</tr>
<tr>
<td>Rajyasree Emmadi, MD, FCAP</td>
<td>Venkatakrishna Shyamala, PhD</td>
</tr>
<tr>
<td>University of Illinois At Chicago</td>
<td>Consultant, Molecular Diagnostics and Blood Screening</td>
</tr>
<tr>
<td>Chicago, Illinois, USA</td>
<td>North Potomac, Maryland, USA</td>
</tr>
<tr>
<td>Manohar R. Furtado, PhD</td>
<td>Laurina O. Williams, PhD, MPH</td>
</tr>
<tr>
<td>Life Technologies/Applied Biosystems</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>Foster City, California, USA</td>
<td>Atlanta, Georgia, USA</td>
</tr>
<tr>
<td>Felicitas Lacbawan, MD, FCAP, FACMG</td>
<td>Alan Wu, PhD, DABCC</td>
</tr>
<tr>
<td>CAP Biochemical and Molecular Genetics</td>
<td>San Francisco General Hospital</td>
</tr>
<tr>
<td>Subcommittee</td>
<td>San Francisco, California, USA</td>
</tr>
<tr>
<td>Northfield, Illinois, USA</td>
<td></td>
</tr>
</tbody>
</table>

CLSI and the Consensus Committee on Molecular Methods gratefully acknowledge the following individuals for their help in preparing Section 11.1.5.6, Chimerism Testing:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas A. Bost, BA</td>
<td>Ian J. McLaughlin, BA</td>
</tr>
<tr>
<td>Celera Corporation</td>
<td>Celera Corporation</td>
</tr>
<tr>
<td>Alameda, California, USA</td>
<td>Alameda, California, USA</td>
</tr>
<tr>
<td>Jan Capper, BA, CHS(ABHI)</td>
<td>Celera Corporation</td>
</tr>
<tr>
<td>Alameda, California, USA</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii
1 Scope .. 1
2 Introduction .. 2
3 Standard Precautions .. 3
4 Terminology ... 3
4.1 A Note on Terminology .. 3
4.2 Definitions .. 4
4.3 Abbreviations and Acronyms ... 15
5 Safety ... 19
5.1 Standard Precautions ... 19
5.2 Biological Hazards .. 20
5.3 Chemical Hazards ... 20
5.4 Radiation Hazards ... 21
5.5 Ultraviolet Light Hazards ... 21
5.6 Electrical Hazards ... 22
6 Strategic Planning .. 22
6.1 A Strategic Planning Tool ... 22
6.2 Examples of SWOT Analysis ... 27
7 Patient Samples and Nucleic Acid Extraction ... 31
7.1 Patient Samples ... 31
7.2 Specimen Processing and Preparation for Nucleic Acid Extraction 36
7.3 Nucleic Acid Extraction .. 37
7.4 Nucleic Acid Extraction Methods ... 39
8 Implementation Plan .. 40
8.1 Facilities for Target Amplification ... 40
8.2 Equipment ... 46
8.3 Laboratory Information System Interface .. 48
8.4 Workflow .. 48
8.5 Procedures/Instructions (Standard Operating Procedures) ... 49
8.6 Reference Materials ... 49
8.7 Verification and Validation .. 52
8.8 Results and Data Analysis .. 56
9 Quality Management System ... 60
10 Developing a Quality Management System ... 60
10.1 Components of the Quality Management System Unique to Molecular Testing 61
10.2 Proficiency Testing (External Quality Assessment) .. 69
Contents (Continued)

10.3 Specific Postexamination Considerations: Clinical Interpretation of Patient Test Results ... 71

11 Unique Considerations for Different Laboratory Specialties .. 72

11.1 Heritable Diseases ... 72

11.2 Oncology and Malignant Hematology .. 101

11.3 Pharmacogenomics .. 111

11.4 Infectious Diseases ... 116

References .. 155

Appendix A. Regulatory Requirements .. 179

Appendix B. Technology Overview and Platforms .. 210

Appendix C. Examples of Technology Available to Detect Infectious Diseases .. 232

The Quality Management System Approach .. 234

Related CLSI Reference Materials .. 236
Foreword

This guideline was written in response to the growing migration of common molecular diagnostic tests from solely esoteric laboratories to the more routine clinical environment. Molecular assays are becoming more attractive to routine clinical laboratories based on the availability of *in vitro* diagnostic devices and the relative ease of their implementation. Incorporating molecular testing into the routine menu decreases the need for sendouts, thus improving turnaround time and the financial health of the laboratory.

Key Words

Molecular diagnostics, molecular genetics, molecular hematopathology, molecular infectious disease, molecular regulatory requirements, strategic planning, unidirectional workflow
Establishing Molecular Testing in Clinical Laboratory Environments; Approved Guideline

1 Scope

This document was written by experienced molecular laboratory professionals to provide an introduction to molecular diagnostics for nonmolecular, routine clinical laboratories, as well as a framework for decision making and implementation of molecular testing. The target audience of this guideline is the stakeholders who play a role in the strategic decision to implement a molecular diagnostic program, including the:

- Medical and technical directors who may not have previous experience with molecular testing
- Supervisory technical staff who implement molecular assays for the first time
- Quality management systems (QMS) group who will adapt the quality plan to incorporate the unique aspects of the new program
- Production staff that will perform and maintain all aspects of the assays

Because molecular diagnostics encompasses a very broad area, this document focuses on clinical applications and technologies most likely to be used in a laboratory that is venturing into molecular testing for the first time. The laboratory may have a concentration in a specific subspecialty (eg, microbiology) or not. However, given that this document is written for nonmolecular experts, several more complex areas of molecular testing were excluded from the scope, including:

- Complex technologies, including, but not limited to, laboratory-developed tests (LDTs) that require primer and/or probe design, proteomics, pulsed-field gel electrophoresis, multiple locus sequence testing, and repetitive extragenic palindromic sequence-based polymerase chain reaction (PCR)
- Complex reflex testing algorithms
- Laboratory tests that require a high degree of clinical expertise to interpret, such as donor-recipient compatibility typing, and molecular typing of strains possibly related in an outbreak
- Tests for sexual abuse and forensics
- Tests of the blood and tissue supply (eg, blood banks)

It is also out of the scope of this guideline to consider assays that should remain in specialized or esoteric testing facilities, such as:

- Methods for detecting pathogens such as bioterrorism agents that require biosafety levels (BSL) 3 or greater, which are otherwise handled in specialized facilities
- Prenatal diagnosis and preimplantation genetic diagnosis (PGD) of heritable disease