This standard covers the current recommended methods for disk diffusion susceptibility testing and the reference methods for determining minimal inhibitory concentrations of aerobic bacteria by broth macrodilution, broth microdilution, and agar dilution for veterinary use.

A standard for global application developed through the Clinical and Laboratory Standards Institute consensus process.
The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Antimicrobial susceptibility testing is indicated for any organism that contributes to an infectious process warranting antimicrobial chemotherapy if its susceptibility cannot be reliably predicted from knowledge of the organism’s identity. Susceptibility tests are most often indicated when the causative organism is thought to belong to a species capable of exhibiting resistance to commonly used antimicrobial agents.

Various laboratory methods can be used to measure the \textit{in vitro} susceptibility of bacteria to antimicrobial agents. In many veterinary microbiology laboratories, an agar disk diffusion method is used routinely for testing common, rapidly growing, and certain fastidious bacterial pathogens. Clinical and Laboratory Standards Institute standard VET01—
\textit{Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals} describes disk diffusion, as well as standard broth dilution (macrodilution and microdilution) and agar dilution, and it includes a series of procedures to standardize the way the tests are performed. The performance, applications, and limitations of the current CLSI-recommended methods are also described. The supplemental information (VET081 tables) used with this standard represents the most current information for antimicrobial agent selection, interpretation, and quality control using the procedures standardized in VET01.
Committee Membership

Consensus Council

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution/Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis J. Ernst, MT(ASCP), NCPT(NCCT)</td>
<td>Chairholder</td>
<td>Center for Phlebotomy Education</td>
<td>USA</td>
</tr>
<tr>
<td>Mary Lou Gantzer, PhD, FACB</td>
<td>Vice-Chairholder</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>J. Rex Astles, PhD, FACB, DABCC</td>
<td></td>
<td>Centers for Disease Control and Prevention</td>
<td>USA</td>
</tr>
<tr>
<td>Lucia M. Berte, MA, MT(ASCP)SBB, DLM, CQA(ASQ)CMQ/OE</td>
<td></td>
<td>Laboratories Made Better!</td>
<td>USA</td>
</tr>
<tr>
<td>Karen W. Dyer, MT(ASCP), DLM</td>
<td></td>
<td>Centers for Medicare & Medicaid Services</td>
<td>USA</td>
</tr>
<tr>
<td>Thomas R. Fritsche, MD, PhD, FCAP, FIDSA</td>
<td></td>
<td>Marshfield Clinic</td>
<td>USA</td>
</tr>
<tr>
<td>Loralie J. Langman, PhD, DABCC, FACB, F-ABFT</td>
<td></td>
<td>Mayo Clinic</td>
<td>USA</td>
</tr>
<tr>
<td>Ross J. Molinaro, PhD, MLS(ASCP)CM, DABCC, FACB</td>
<td></td>
<td>Siemens Healthcare Diagnostics, Inc.</td>
<td>USA</td>
</tr>
<tr>
<td>James R. Petisee, PhD</td>
<td></td>
<td>BD Diagnostic Systems</td>
<td>USA</td>
</tr>
<tr>
<td>Andrew Quintenz</td>
<td></td>
<td>Bio-Rad Laboratories, Inc.</td>
<td>USA</td>
</tr>
<tr>
<td>Robert Rej, PhD</td>
<td></td>
<td>New York State Department of Health – Wadsworth Center</td>
<td>USA</td>
</tr>
<tr>
<td>Zivana Tezak, PhD</td>
<td></td>
<td>FDA Center for Devices and Radiological Health</td>
<td>USA</td>
</tr>
</tbody>
</table>

Document Development Committee on Veterinary AST Methods Standard

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution/Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael T. Sweeney, MS</td>
<td>Chairholder</td>
<td>Zoetis</td>
<td>USA</td>
</tr>
<tr>
<td>Dubraska V. Diaz-Campos, DVM, PhD</td>
<td>Vice-Chairholder</td>
<td>College of Veterinary Medicine, The Ohio State University</td>
<td>USA</td>
</tr>
<tr>
<td>Maria M. Traczewski, BS, MT(ASCP)</td>
<td>Committee Secretary</td>
<td>The Clinical Microbiology Institute</td>
<td>USA</td>
</tr>
<tr>
<td>Robert Bowden, BS</td>
<td></td>
<td>University of Florida Veterinary Diagnostic Laboratories</td>
<td>USA</td>
</tr>
<tr>
<td>Joshua Hayes, PhD</td>
<td></td>
<td>FDA Center for Veterinary Medicine</td>
<td>USA</td>
</tr>
<tr>
<td>Cory Langston, DVM, PhD</td>
<td></td>
<td>Mississippi State University</td>
<td>USA</td>
</tr>
<tr>
<td>Christine Pallotta, MS, BS</td>
<td></td>
<td>Thermo Fisher Scientific</td>
<td>USA</td>
</tr>
<tr>
<td>Anne Parkinson, BS</td>
<td></td>
<td>Ohio Animal Disease Diagnostic Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>Stefan Schwarz, DVM</td>
<td></td>
<td>Freie Universität Berlin</td>
<td>Germany</td>
</tr>
<tr>
<td>Claire Miller, DVM, PhD, DACVM</td>
<td></td>
<td>Washington State University</td>
<td>USA</td>
</tr>
</tbody>
</table>
Subcommittee on Veterinary Antimicrobial Susceptibility Testing

Mark G. Papich, DVM, MS
Chairholder
College of Veterinary Medicine, North Carolina State University
USA
Mark Fielder, PhD
School of Life Science, Kingston University London
United Kingdom
Thomas R. Shryock, PhD
Antimicrobial Consultants, LLC
USA

Brian V. Lubbers, DVM, PhD, DACVCP
Vice-Chairholder
Kansas State Veterinary Diagnostic Laboratory
USA
Cynthia C. Knapp, MS, BS, MT(ASCP)
Thermo Fisher Scientific
USA
Virginia Sinnott-Stutzman, DVM, DACVECC
Angell Animal Medical Center (MSPCA)
USA

Stefan Schwarz, DVM
Committee Secretary
Freie Universität Berlin
Germany
Xian-Zhi Li, PhD
Health Canada Veterinary Drugs Directorate
Canada
Maria Traczewski, BS, MT(ASCP)
The Clinical Microbiology Institute
USA

Dubraska V. Diaz-Campos, DVM, PhD
College of Veterinary Medicine, The Ohio State University
USA
Marilyn N. Martinez, PhD
FDA Center for Veterinary Medicine
USA

Staff
Clinical and Laboratory Standards Institute
USA
Lori T. Moon, MS, MT(ASCP)
Project Manager

Megan L. Tertel, MA, ELS
Editorial Manager
Kristy L. Leirer, MS
Editor
Catherine E.M. Jenkins
Editor
Laura Martin
Editor

Acknowledgment for the Expert Panel on Microbiology

CLSI, the Consensus Council, the Document Development Committee on Veterinary AST Methods Standard, and the Subcommittee on Veterinary Antimicrobial Susceptibility Testing gratefully acknowledge the Expert Panel on Microbiology for serving as technical advisors and subject matter experts during the development of this standard.

Expert Panel on Microbiology

Richard B. Thomson, Jr., PhD, D(ABMM), FAAM
Chairholder
Evanston Hospital, NorthShore University HealthSystem
USA
Carey-Ann Burnham, PhD, D(ABMM)
Washington University School of Medicine
USA
David H. Pincus, MS, RM/SM(NRCM), SM(ASCP)
bioMérieux, Inc.
USA

Mary Jane Ferraro, PhD, MPH
Vice-Chairholder
Massachusetts General Hospital and Harvard Medical School
USA
German Esparza, BSc
Proasecal SAS
Colombia
Audrey N. Schuetz, MD, MPH, D(ABMM)
FDA Center for Devices and Radiological Health
USA

Lynette Y. Berkeley, PhD, MT(ASCP)
FDA Center for Drug Evaluation and Research
USA
Jean B. Patel, PhD, D(ABMM)
Centers for Disease Control and Prevention
USA
Ribhi M. Shawar, PhD, D(ABMM)
Mayo Clinic
USA

This is a preview of "CLSI VET01-Ed5". Click here to purchase the full version from the ANSI store.
Acknowledgment

CLSI, the Consensus Council, the Document Development Committee on Veterinary AST Methods Standard, and the Subcommittee on Veterinary Antimicrobial Susceptibility Testing gratefully acknowledge the following volunteers for their important contributions to the development of this standard:

Thomas R. Fritsche, MD, PhD, FCAP, FIDSA
Marshfield Clinic
USA

Tomás Martin-Jimenez, DVM, PhD, DACVCP, DECVPT
College of Veterinary Medicine, University of Tennessee
USA

Brian V. Lubbers, DVM, PhD, DACVCP
Kansas State Veterinary Diagnostic Laboratory
USA

Mark G. Papich, DVM, MS
College of Veterinary Medicine,
North Carolina State University
USA
Contents

Abstract..i

Committee Membership..iii

Foreword..ix

Chapter 1: Introduction ...1
 1.1 Scope..1
 1.2 Background..2
 1.3 Standard Precautions...5
 1.4 Terminology...5

Chapter 2: Indications for Performing Antimicrobial Susceptibility Tests..9
 2.1 Selecting Antimicrobial Agents for Routine Testing ...10
 2.2 Antimicrobial Agent Classes...11
 2.3 Guidelines for Routine Reporting...14
 2.4 Guidelines for Selective Reporting...15

Chapter 3: Overview of Antimicrobial Susceptibility Testing Processes17

Chapter 4: Disk Diffusion Antimicrobial Susceptibility Testing Process19
 4.1 Reagents and Materials for Disk Diffusion Tests ..21
 4.2 Organism Growth for Inoculum and Testing Strains That Fail to Grow Satisfactorily23
 4.3 Preparing Inoculum for Disk Diffusion Tests ...23
 4.4 Inoculating the Test Plates ..25
 4.5 Applying Disks and Incubating Inoculated Agar Plates ..25
 4.6 Special Considerations for Fastidious Organisms ...26
 4.7 Reading Plates ..28
 4.8 Recording, Interpreting, and Reporting Results ...29
 4.9 Disk Diffusion Zone Diameter Equivalent Minimal Inhibitory Concentration Breakpoints ...30
 4.10 Disk Diffusion Method Limitations ...30

Chapter 5: Broth Dilution Antimicrobial Susceptibility Testing Process33
 5.1 Reagents and Materials for Broth Dilution Tests ..36
 5.2 Organism Growth for Inoculum and Testing Strains That Fail to Grow Satisfactorily40
 5.3 Preparing Inoculum for Dilution Tests ..41
 5.4 Inoculum Preparation and Inoculation ...42
 5.5 Inoculum Suspension Colony Counts ...44
 5.6 Incubation ..44
 5.7 Special Considerations for Fastidious Organisms ..44
 5.8 Determining Broth Macro- or Microdilution End Points ...46
 5.9 Recording, Interpreting, and Reporting Results ...49
 5.10 Dilution Test Method Limitations ..50

Chapter 6: Agar Dilution Antimicrobial Susceptibility Testing Process53
 6.1 Reagents and Materials for Agar Dilution Tests ...56
 6.2 Organism Growth for Inoculum and Testing Strains That Fail to Grow Satisfactorily60
 6.3 Preparing Inoculum for Dilution Tests ..60
 6.4 Inoculating Agar Plates ...62
Contents (Continued)

6.5 Incubating Agar Dilution Plates ... 62
6.6 Special Considerations for Fastidious Organisms .. 63
6.7 Determining Agar Dilution End Points .. 64
6.8 Recording, Interpreting, and Reporting Results .. 64
6.9 Dilution Test Method Limitations ... 65

Chapter 7: Screening Tests to Detect Resistance ... 67
7.1 Screening Tests .. 67
7.2 Detecting Resistance in Staphylococci .. 67
7.3 Detecting Resistance in Enterococci .. 73
7.4 Detecting β-Lactam Resistance in Gram-Negative Bacilli 74
7.5 Detecting Resistance in Streptococci .. 77
7.6 Detecting Penicillin Resistance and β-Lactamase in Haemophilus spp. 78

Chapter 8: Quality Control and Quality Assurance ... 79
8.1 Quality Control Purpose .. 79
8.2 Quality Control Responsibilities ... 79
8.3 Selecting Strains for Quality Control .. 80
8.4 Maintaining and Testing Quality Control Strains .. 82
8.5 Batch or Lot Quality Control ... 84
8.6 Acceptable Quality Control Ranges ... 85
8.7 Quality Control Testing Frequency ... 85
8.8 Out-of-Range Results With Quality Control Strains and Corrective Action ... 87
8.9 Reporting Patient Results When Out-of-Range Quality Control Results Are Observed ... 90
8.10 Confirming Results When Testing Patient Isolates 90
8.11 Reporting Minimal Inhibitory Concentration Results 91
8.12 End-Point Interpretation Control ... 91

Chapter 9: Additional Antimicrobial Susceptibility and Resistance Reporting 93
9.1 Cumulative Antimicrobial Susceptibility Test Data Summary Reports 93
9.2 Veterinary Antimicrobial Resistance Monitoring Surveillance Programs 93

Chapter 10: Conclusion .. 96

Chapter 11: Supplemental Information .. 96

References ... 96

Appendix A. Preparation of Media, Supplements, and Reagents 100
Appendix B. Conditions for Disk Diffusion Antimicrobial Susceptibility Tests ... 111
Appendix C. Conditions for Broth and Agar Dilution Antimicrobial Susceptibility Tests ... 115
Appendix D. Screening Test Methods to Detect Resistance 121
Appendix E. Quality Control Strain Maintenance .. 124
Appendix F. Antimicrobial Susceptibility Testing Quality Control Form 126
Appendix G. Quality Control Protocol Flow Charts .. 128
The Quality Management System Approach .. 132
Related CLSI Reference Materials ... 134
Foreword

In this revision of VET01, several sections were added or revised, as outlined in the Overview of Changes. One of the main updates is the reformating of the standard to follow a laboratory’s path of workflow, defined as the sequential processes of preexamination, examination, and postexamination. An overview of the antimicrobial susceptibility testing process is provided in the beginning of the standard in the new Figure 1 (see Chapter 3) and at the beginning of each method chapter (Chapters 4 through 6), with various testing methods shown in easy-to-follow step-action tables throughout the standard. Other improvements have been made in VET01 by incorporating relevant updates derived from CLSI documents M02\(^2\) and M07\(^3\) and by adding new antimicrobial agents or testing standards for veterinary pathogens.

The most current edition of CLSI document VET08\(^1\) (formerly VET01S), a volume of tables published every 2 to 3 years, is made available with this standard to ensure users are aware of the latest Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) performance standards related to both methods and the information presented in the tables. Previously published tables should be replaced with the current editions for interpreting breakpoints. Because of potential international differences that restrict use of certain antimicrobial agents, some jurisdiction-specific restrictions are described in VET08\(^1\) Table 1 footnotes and in VET08\(^1\) Table 2A comments.

Significant changes in the revision of the VET08\(^1\) tables since 2013 include veterinary-specific breakpoints for categorizing methicillin-susceptible and methicillin-resistant strains of *Staphylococcus pseudintermedius*, which are different from *Staphylococcus aureus* breakpoints. Newly approved antimicrobial agents, such as the fluoroquinolone pradofloxacin, the macrolides gamithromycin and tildipirosin, and the cephalosporin cefovecin have been added to VET08\(^1\) using data presented by the sponsors. For testing of first-generation cephalosporins in dogs, cephalothin has been replaced with cephalexin, which is more predictive of susceptibility and is also used more commonly in dogs. These and other specific changes to the VET08\(^1\) tables are summarized at the beginning of VET08.\(^1\)

Other important additions to the VET08\(^1\) tables are breakpoints for antimicrobial agents that did not previously have a veterinary-specific breakpoint. These are often human antimicrobial agents that are not approved in all countries for animals but may be used legally in some countries by veterinarians in their generic forms. The new additions include doxycycline (for dogs and horses), minocycline (for dogs), amikacin (for dogs and horses), cephalexin (for dogs), cefazolin (for dogs and horses), ampicillin/amoxicillin (for dogs, pigs, and horses), amoxicillin-clavulanate (for dogs and cats), and piperacillin-tazobactam (for dogs), among others. The veterinary diagnostic and related laboratory community is encouraged to provide feedback so that VET01 and its supplement VET08\(^1\) can be kept up to date, maintaining clinical relevance.

Many other editorial and procedural changes in this edition of VET01 were made since 2013 following meetings of the Document Development Committee on Veterinary AST Methods Standard and the Subcommittee on VAST. The most important changes in this standard are summarized below.

Overview of Changes

This standard replaces the previous edition of the approved standard, VET01-A4, published in 2013. Several changes were made in this edition, including:

- **General:**
 - To harmonize with the International Organization for Standardization, the terms for the methods for inoculum preparation have been changed. “Growth method” has been changed to “broth culture method,” and “direct colony suspension method” has been changed to “colony suspension method” throughout the standard.
Formatting has been changed throughout the standard:
 o The information and techniques needed for performing each type of methodology are divided into three separate chapters:
 ▪ Chapter 4, Disk Diffusion Antimicrobial Susceptibility Testing Process
 ▪ Chapter 5, Broth Dilution Antimicrobial Susceptibility Testing Process
 ▪ Chapter 6, Agar Dilution Antimicrobial Susceptibility Testing Process
 o Information and special techniques needed for detecting resistance are in a new, separate chapter (Chapter 7, Screening Tests to Detect Resistance), with new step-action tables included in Appendix D.

Easy-to-follow step-action tables are introduced, consistent with CLSI’s goal to make standards and guidelines more user friendly. Most of these tables reflect reformatted text that appeared in the previous edition of VET01. Any changes to the testing recommendations are summarized here in the Overview of Changes.
 o The new step-action tables for disk diffusion tests include:
 ▪ Subchapter 4.1.2.1, Storing and Handling Antimicrobial Disks
 ▪ Subchapter 4.3.2, Colony Suspension Method for Inoculum Preparation
 ▪ Subchapter 4.3.3, Broth Culture Method for Inoculum Preparation
 ▪ Subchapter 4.4, Inoculating the Test Plates
 ▪ Subchapter 4.5, Applying Disks and Incubating Inoculated Agar Plates
 o The new step-action tables for broth dilution tests include:
 ▪ Subchapter 5.1.3, Preparing and Storing Diluted Antimicrobial Agents (for both broth macrodilution [tube] method and broth microdilution method)
 ▪ Subchapter 5.3.2, Colony Suspension Method for Inoculum Preparation
 ▪ Subchapter 5.3.3, Broth Culture Method for Inoculum Preparation
 ▪ Subchapter 5.4, Inoculum Preparation and Inoculation (for both broth macrodilution [tube] method and broth microdilution method)
 ▪ Subchapter 5.6, Incubation (for both broth macrodilution [tube] method and broth microdilution method)
 ▪ Subchapter 5.8, Determining Broth Macro- or Microdilution End Points
 o The new step-action tables for agar dilution tests include:
 ▪ Subchapter 6.1.4, Preparing Agar Dilution Plates
 ▪ Subchapter 6.3.2, Colony Suspension Method for Inoculum Preparation
 ▪ Subchapter 6.3.3, Broth Culture Method for Inoculum Preparation
 ▪ Subchapter 6.4, Inoculating Agar Plates
 ▪ Subchapter 6.5, Incubating Agar Dilution Plates
 ▪ Subchapter 6.7, Determining Agar Dilution End Points

Subchapter 1.4.1, Definitions:
 - Clarified definitions for breakpoint, interpretive category, susceptible, intermediate, resistant, nonsusceptible, and quality control
 - Added definitions for test method and test system
Subchapter 2.2.3, Folate Pathway Antagonists:
- Revised nomenclature from “folate pathway inhibitor” to “folate pathway antagonist”

Subchapter 2.3, Guidelines for Routine Reporting:
- Provided additional information on the location of test and report group designations in VET08¹

Subchapter 2.4, Guidelines for Selective Reporting:
- Provided additional information on the reasons for selective reporting, with subchapters containing examples and warnings about potentially misleading results

Chapter 3, Overview of Antimicrobial Susceptibility Testing Processes:
- Added flow chart (Figure 1) that provides an overview of antimicrobial susceptibility testing processes

Chapter 4, Disk Diffusion Antimicrobial Susceptibility Testing Process:
- Added flow chart (Figure 2) that provides an overview of the disk diffusion susceptibility testing process

Subchapters 4.6, 5.7, and 6.6, Special Considerations for Fastidious Organisms:
- Added tables that summarize special testing conditions (eg, media, incubation time, and temperature) for fastidious organisms in each method chapter

Subchapter 4.7, Reading Plates:
- Added reference to the M02 Disk Diffusion Reading Guide⁴
- Noted that the penicillin zone edge test can be useful for determining β-lactamase production in Staphylococcus aureus strains with penicillin zones ≥29 mm

Subchapters 4.8, 5.9, and 6.8, Recording, Interpreting, and Reporting Results:
- Added subchapters on recording results, determining interpretive categories, and reporting results, with consideration of warnings and intrinsic resistance

Subchapters 4.8.1, 5.9.1, and 6.8.1, Recording Results and Determining Interpretive Categories:
- Added explanation of nonsusceptible to disk diffusion and minimal inhibitory concentration (MIC) interpretive categories

- Added explanation of and suggestion to record results in individual data fields for quantitative (zone measurement values) and qualitative test interpretation or interpretive category (ie, whether the isolate is classified as resistant, intermediate, or susceptible)

Subchapters 4.8.2, 5.9.2, and 6.8.2, Reporting Results:
- Added considerations needed before reporting results:
 o Warnings against the use of specific antimicrobial agents regardless of in vitro results
 o Intrinsic resistance
 o Additional species-specific and screening tests to detect resistance
 o Evaluation of QC results

Subchapters 4.8.3, 5.9.3, and 6.8.3, Warnings and Intrinsic Resistance:
- Added warnings about misleading results
- Added reference to new intrinsic resistance table (Appendix B in VET08¹)
• Chapter 5, Broth Dilution Antimicrobial Susceptibility Testing Process:
 - Added flow chart (Figure 3) that provides an overview of the broth dilution susceptibility testing process

• Subchapter 5.1.2.2, Broth Media for Testing Fastidious Organisms:
 - Added Mueller-Hinton fastidious broth medium with yeast extract (MHF-Y)\(^b\)

• Subchapter 5.7, Special Considerations for Fastidious Organisms:
 - Included MHF-Y as an acceptable medium for broth dilution testing of *A. pleuropneumoniae* and *H. somni*\(^b\)

• Subchapter 5.8, Determining Broth Macro- or Microdilution End Points:
 - Added new figures (Figures 4 through 7) to illustrate growth control wells, trailing end points, partial inhibition, and skipped well examples of MIC reporting

• Chapter 6, Agar Dilution Antimicrobial Susceptibility Testing Process:
 - Added flow chart (Figure 8) that provides an overview of the agar dilution susceptibility testing process

• Subchapter 7.2.2, Methicillin/Oxacillin Resistance:
 - Expanded explanation of mechanisms and generic determinants of oxacillin resistance in staphylococci, which includes *mecC* in *S. aureus*

• Subchapter 7.2.2.1, Methods for Detecting Oxacillin Resistance:
 - Expanded the discussion of oxacillin resistance and added a table that summarizes the tests available to detect oxacillin resistance in staphylococci
 - Clarified time of incubation for testing of cefoxitin against *Staphylococcus* spp.: 24 hours for coagulase-negative staphylococci and 16 to 18 hours for *S. aureus*

• Subchapter 7.2.2.2, Reporting Oxacillin for Staphylococci:
 - Clarified several reporting recommendations to include application of oxacillin results to other penicillinase-stable penicillins and reporting results for *mecA*-negative *S. aureus* and/or penicillin-binding protein 2a–negative *S. aureus* with oxacillin MICs ≥ 4 µg/mL

• Subchapter 7.2.3.2, Reporting Vancomycin for Staphylococci:
 - Emphasized the need to confirm and communicate results to appropriate authorities when *S. aureus* and coagulase-negative staphylococci with vancomycin MICs of ≥ 8 µg/mL and ≥ 32 µg/mL, respectively, are encountered

• Subchapter 7.3.3, High-Level Aminoglycoside Resistance:
 - Noted that high-level resistance to both gentamicin and streptomycin implies resistance to all aminoglycosides

• Subchapter 7.4, Detecting β-Lactam Resistance in Gram-Negative Bacilli:
 - Expanded previous section on detection of extended-spectrum β-lactamase–producing *Enterobacteriaceae* to include enzyme classifications and characteristics (Table 6)

\(^b\) VET01, 5th ed. was re-released in November 2019 to include a new broth medium approved for antimicrobial susceptibility testing of the veterinary fastidious pathogens *Actinobacillus pleuropneumoniae* and *Histophilus somni*. Please see the full memo on the CLSI website (https://clsi.org/standards-development/document-correction-notices/) for more information.
- Divided into subchapters with details on extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases

- **Subchapter 7.4.1, Extended-Spectrum β-Lactamases:**
 - Updated discussion of extended-spectrum β-lactamases
 - Updated nomenclature for Enterobacter aerogenes to Klebsiella (formerly Enterobacter) aerogenes

- **Subchapter 7.4.2, AmpC Enzymes:**
 - Added discussion of AmpC β-lactamases in gram-negative bacilli

- **Subchapter 7.4.3, Carbapenemases (Carbapenem-Resistant Gram-Negative Bacilli):**
 - Added discussion of carbapenemases in gram-negative bacilli
 - Added reference to the CarbaNP colorimetric microtube assay to detect carbapenemase activity
 - Added examples of β-lactamases with carbapenemase activity (Table 7)

- **Subchapter 7.5.2, Inducible Lincosamide Resistance in S. pneumoniae and β-Hemolytic Streptococcus spp.:**
 - Noted that infections due to streptococci with inducible lincosamide resistance may fail to respond to lincosamide therapy

- **Subchapter 8.3, Selecting Strains for Quality Control:**
 - Expanded description of routine and supplemental QC strains

- **Subchapter 8.4.2, Subculturing Frozen or Freeze-Dried Quality Control Strains:**
 - Introduced the terms “F1,” “F2,” and “F3” to indicate “frozen” or “freeze-dried” subcultures of QC strains and provided enhanced recommendations for handling QC strains

- **Subchapter 8.7.2, Performance Criteria for Reducing Quality Control Frequency to Weekly:**
 - Introduced the 15-replicate (3- × 5-day) QC plan as an alternative to the 20- or 30-day QC plan

- **Appendixes:**
 - Reorganized to reflect the order in which they are mentioned in the main text:
 o Appendix A. Preparation of Media, Supplements, and Reagents (new)
 o Appendix B. Conditions for Disk Diffusion Antimicrobial Susceptibility Tests (new)
 o Appendix C. Conditions for Broth and Agar Dilution Antimicrobial Susceptibility Tests (new)
 o Appendix D. Screening Test Methods to Detect Resistance (new)
 o Appendix E. Quality Control Strain Maintenance (new)
 o Appendix F. Antimicrobial Susceptibility Testing Quality Control Form
 o Appendix G. Quality Control Protocol Flow Charts (formerly Appendixes B and C)
 - Deleted Disk Diffusion Quality Control Troubleshooting Guide (formerly Appendix D1; currently Table 4C, Disk Diffusion Reference Guide to QC Frequency, in VET081)
 - Deleted Minimal Inhibitory Concentration Quality Control Troubleshooting Guide (formerly Appendix D2; currently Table 5C, MIC QC Ranges for Anaerobes [Agar Dilution Method], in VET081)
• **Appendix A. Preparation of Media, Supplements, and Reagents:**
 - Added appendix with instructions for preparation of media and reagents used for all methodologies (agar media, supplements, broth media, reagents, and turbidity standard)
 - Added a new section (A3.5.2, Mueller-Hinton Fastidious Medium With Yeast Extract) with a step-action table that describes preparation of MHF-Y for broth microdilution testing of *A. pleuropneumoniae* and *H. somni*.

• **Appendix B. Conditions for Disk Diffusion Antimicrobial Susceptibility Tests:**
 - Added tables with testing conditions for nonfastidious and fastidious organisms

• **Appendix C. Conditions for Broth and Agar Dilution Antimicrobial Susceptibility Tests:**
 - Added tables with testing conditions for nonfastidious and fastidious organisms
 - Added MHF-Y for broth microdilution testing of *A. pleuropneumoniae* and *H. somni* to Table C2, Conditions for Dilution Antimicrobial Susceptibility Tests for Fastidious Organisms.

• **Appendix D. Screening Test Methods to Detect Resistance:**
 - Added appendix with methodology for screening tests to detect resistance described in Chapter 7

• **Appendix E. Quality Control Strain Maintenance:**
 - Revised schematic that depicts stages of subculture and testing of QC strains that originate from “frozen” or “freeze-dried” stock cultures

• **Appendix G. Quality Control Protocol Flow Charts:**
 - Revised and expanded flow charts to better convey the QC testing process (for either disk diffusion or dilution antimicrobial susceptibility tests), with options to convert from daily to weekly QC testing (20- or 30-day plan and 15-replicate [3- × 5-day] plan)
 - Added flow charts for corrective action for daily and weekly QC testing

NOTE: The content of this standard is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

Key Words

Agar diffusion, agar dilution, antibiotic, antimicrobial agent, antimicrobial susceptibility testing, broth dilution, broth macrodilution, broth microdilution, disk diffusion, Kirby-Bauer, minimal inhibitory concentration, veterinary

Use of Supplement C™ in this standard is not an endorsement on the part of CLSI. With each use of the trade name, the words “or the equivalent” are added to indicate that this standard also applies to any equivalent products.

c **VET01, 5th ed.** was re-released in November 2019 to include a new broth medium approved for antimicrobial susceptibility testing of the veterinary fastidious pathogens *A. pleuropneumoniae* and *H. somni*. Please see the full memo on the CLSI website (https://clsi.org/standards-development/document-correction-notices/) for more information.
Summary of CLSI Processes for Establishing Breakpoints and Quality Control Ranges

The Clinical and Laboratory Standards Institute (CLSI) is an international, voluntary, not-for-profit, interdisciplinary, standards-developing, and educational organization accredited by the American National Standards Institute that develops and promotes the use of consensus-developed standards and guidelines within the health care community. These consensus standards and guidelines are developed in an open and consensus-seeking forum to cover critical areas of diagnostic testing and patient health care. CLSI is open to anyone or any organization that has an interest in diagnostic testing and patient care. Information about CLSI is found at www.clsi.org.

The CLSI Subcommittee on Veterinary Antimicrobial Susceptibility Testing reviews data from a variety of sources and studies (e.g., in vitro, pharmacokinetics-pharmacodynamics, and clinical studies) to establish antimicrobial susceptibility test methods, breakpoints, and QC parameters. The details of the data necessary to establish breakpoints, QC parameters, and how the data are presented for evaluation are described in CLSI document VET02.6

The subcommittee’s goal is to establish veterinary-specific breakpoints to decrease reliance on human medical breakpoints. However, human medical breakpoints are still listed in VET081 Table 2 series, identified with gray-shaded text, allowing comparison of veterinary-specific and human medical breakpoints. Human medical breakpoints are occasionally necessary to provide zones of inhibition for some categories and a breakpoint for laboratories to consider when there are no veterinary breakpoints available for some antimicrobial agents and organisms for that animal species.

Over time, a microorganism’s susceptibility to an antimicrobial agent may decrease, resulting in decreased clinical efficacy and/or safety. In addition, microbiological methods and QC parameters may be refined to ensure more accurate and better performance of susceptibility test methods. Because of these types of changes, CLSI continually monitors and updates information in its documents. Although CLSI standards and guidelines are developed using the most current information available at the time, the field of science and medicine is always changing; therefore, standards and guidelines should be used in conjunction with clinical judgment, current knowledge, and clinically relevant laboratory test results to guide patient treatment.

Additional information, updates, and changes in this standard are found in the meeting summary minutes of the Subcommittee on Veterinary Antimicrobial Susceptibility Testing at www.clsi.org.
CLSI Reference Methods vs Commercial Methods and CLSI vs Regulatory Authority Breakpoints

It is important for users of VET01 and the VET08 supplement to recognize that the standard methods described in CLSI documents are reference methods. These methods may be used for routine antimicrobial susceptibility testing of patient isolates. CLSI recognizes that commercial susceptibility testing devices are commonly used by veterinary diagnostic laboratories. Commercial testing devices used in veterinary medicine may not have demonstrated that test results from such systems are substantially equivalent to those generated using reference methods. For example, the US Food and Drug Administration does not have preapproval or regulatory clearance requirements for use of commercial testing devices for veterinary isolates. Manufacturers of commercial testing devices are expected to validate their methods against CLSI reference methods, but CLSI does not evaluate these data. Laboratories should follow the manufacturer’s instructions for quality assurance and quality control testing. The laboratory is responsible for ensuring that the performance of commercial test systems has been validated against the reference method(s).

Currently, there are no regulations that apply to veterinary laboratories regarding susceptibility testing. Veterinary-specific breakpoints are not set by regulatory agencies but have been developed and approved solely by the CLSI Subcommittee on Veterinary Antimicrobial Susceptibility Testing. The guidelines used by CLSI to evaluate data and determine breakpoints are outlined in CLSI document VET02.6

CLSI proactively evaluates the need for changing breakpoints. Following a decision by CLSI to change an existing breakpoint, a delay of one or more years may be needed if a breakpoint and interpretive category change is to be implemented by a device manufacturer. Each laboratory should check with the manufacturer of its commercial susceptibility testing device for additional information on the breakpoints and interpretive categories used in its system’s software. In addition, newly approved or revised breakpoints may be implemented by veterinary diagnostic laboratories. If approved by CLSI, new or revised breakpoints will be published in VET08.1
Subcommittee on Veterinary Antimicrobial Susceptibility Testing Mission Statement and Responsibilities

Mission Statement:

Develop and promote performance standards, breakpoints, and interpretive categories for \textit{in vitro} antimicrobial susceptibility testing of bacteria isolated from animals.

Responsibilities:

The Subcommittee on Veterinary Antimicrobial Susceptibility Testing is composed of representatives from the professions, government, and industry, including microbiology laboratories, government agencies, health care providers and educators, and pharmaceutical and diagnostic microbiology industries. Using the CLSI voluntary consensus process, the subcommittee develops standards that promote accurate antimicrobial susceptibility testing and appropriate reporting. Responsibilities of the Subcommittee on Veterinary Antimicrobial Susceptibility Testing include:

- Developing standard reference methods for antimicrobial susceptibility tests
- Providing quality control parameters for standard test methods
- Establishing breakpoints and interpretive categories for the results of standard antimicrobial susceptibility tests performed on veterinary pathogens
- Providing suggestions for testing and reporting strategies that are clinically relevant and cost-effective
- Continually refining standards through development of new or revised methods, breakpoints, interpretive categories, and quality control parameters
- Educating users through multimedia communication of standards and guidelines
- Fostering a dialogue with users of these methods and those who apply them

The ultimate purpose of the subcommittee’s mission is to provide useful information to enable veterinary diagnostic laboratories to assist the clinician in the selection of appropriate antimicrobial therapy for patient care. The standards and guidelines are meant to be comprehensive and to include all antimicrobial agents for which the data meet established CLSI guidelines. The values that guide this mission are quality, accuracy, fairness, timeliness, teamwork, consensus, and trust.
Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals

Chapter 1: Introduction

This chapter includes:

- Standard’s scope and applicable exclusions
- Background information pertinent to the standard’s content
- Standard precautions information
- Terms and definitions used in the standard
- Abbreviations and acronyms used in the standard

1.1 Scope

This standard describes reference agar disk diffusion techniques, as well as standard broth (macrodilution and microdilution) and agar dilution methods used to determine \textit{in vitro} antimicrobial susceptibility of bacteria that grow aerobically. It includes:

- Agar plate preparation
- Broth and agar dilution test preparation
- Testing conditions, including inoculum preparation and standardization, incubation time, and incubation temperature
- Results interpretation and reporting considerations
- QC procedures
- Disk diffusion and dilution test method limitations

To assist the veterinary laboratory, suggestions are provided for selecting antimicrobial agents for routine testing and reporting. Additionally, a brief overview of the various antimicrobial classes, bacterial mechanisms of antimicrobial resistance (AMR), and specific tests for detecting AMR are included.

For additional resources, standards for testing the \textit{in vitro} antimicrobial susceptibility of bacteria isolated from humans that grow aerobically using disk or dilution methods are found in CLSI documents M100, M02, and M07, respectively. Standards for testing the \textit{in vitro} antimicrobial susceptibility of bacteria that grow anaerobically are found in CLSI document M11. Guidelines for standardized antimicrobial susceptibility testing (AST) of infrequently isolated or fastidious bacteria that are not included in CLSI documents M100, M02, M07, or M11 are available in CLSI documents VET06 and M45. The AST methods provided in this standard can be used in laboratories around the world, including but not limited to:

- Veterinary diagnostic laboratories
- Public health laboratories
- Research laboratories
- Food laboratories
- Environmental laboratories