This report offers guidance on areas in which harmonization can be achieved in veterinary antimicrobial surveillance programs with the intent of facilitating comparison of data among surveillance programs.

A CLSI report for global application.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document VET05-R—*Generation, Presentation, and Application of Antimicrobial Susceptibility Test Data for Bacteria of Animal Origin; A Report* offers guidance on areas in which harmonization can be achieved in national veterinary antimicrobial surveillance programs, with the intent of facilitating comparisons of data among various national surveillance programs. CLSI veterinary antimicrobial susceptibility testing (VAST) methods are used to generate minimal inhibitory concentrations or zones of inhibition, and the laboratory interprets that information into a category of susceptible, intermediate, or resistant. The veterinarian uses this information to make an informed decision in the selection of an appropriate antimicrobial for animal treatment. However, various surveillance programs or projects use the data for many other purposes, including the drafting of risk assessments (subsequently used for risk management) or to determine the success of intervention policies. These programs include multiple national programs, several multinational programs, product-specific programs, and purpose-specific regional or local programs. Currently, there is a lack of standardized methodology describing how the data from these programs are presented in the reports and discussed with regard to the specific program objective. In keeping with the intent of CLSI document M39, this document seeks to bring the CLSI VAST perspective to these programs and projects by means of a comprehensive report that can help form the basis for a global consensus.

Copyright ©2011 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Report

Approved by Consensus Committee on Microbiology
September 2011

Published
September 2011

ISBN 1-56238-765-0 (Print)
ISBN 1-56238-766-9 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Committee Membership

Consensus Committee on Microbiology

John H. Rex, MD, FACP
Chairholder
AstraZeneca
Waltham, Massachusetts, USA

Mary Jane Ferraro, PhD, MPH
Vice-Chairholder
Massachusetts General Hospital
Boston, Massachusetts, USA

Nancy L. Anderson, MMSc,
MT(ASCP)
Centers for Disease Control and
Prevention
Atlanta, Georgia, USA

Document Development Committee on Generation, Presentation, and Application of Antimicrobial Susceptibility Test Data for Bacteria of Animal Origin

Shabbir Simjee, PhD
Chairholder
Elanco Animal Health
Basingstoke, Hampshire, United Kingdom

Robert E. Badal
International Health Management
Associates Inc.
Sacramento, California, USA

Patrick McDermott, PhD
FDA Center for Veterinary Medicine
Laurel, Maryland, USA

Lori T. Moon, MT(ASCP)
MSU Diagnostic Center for Population & Animal Health
Lansing, Michigan, USA
Acknowledgments

CLSI and the Consensus Committee on Microbiology gratefully acknowledge the following individuals for their help in preparing this draft report:

William B. Brasso, BD Diagnostic Systems, Sparks, Maryland, USA
David J. Farrell, PhD, D(ABMM), FCCM, JMI Laboratories, North Liberty, Iowa, USA
Timothy S. Frana, DVM, MS, MPH, PhD, Iowa State University, Ames, Iowa, USA
Amy B. Frey, DO, MS, Cleveland Clinic, Cleveland, Ohio, USA

Ron A. Miller, PhD, FDA Center for Veterinary Medicine, Rockville, Maryland USA
Lori A. Mixson, PhD, Merck & Company, Inc., Rahway, New Jersey, USA
Florence L. Pantozzi, La Plata University, La Plata, Argentina
Yong Ho Park, DVM, MS, PhD, Seoul National University, Seoul, Korea

Thomas R. Shryock, PhD, FDA Center for Veterinary Medicine, Greenfield, Indiana, USA
John D. Turnidge, MD, Women’s and Children’s Hospital, North Adelaide, Australia
Jeffrey L. Watts, PhD, RM(NRCM), Pfizer Animal Health, Kalamazoo, Michigan, USA
Ching Ching Wu, DVM, PhD, Purdue University/School of Veterinary Medicine, West Lafayette, Indiana, USA

I would like to thank all the members and contributors of this document development committee who worked diligently on this document and in doing so gave up a considerable amount of personal time. Special thanks are extended to Thomas Shryock, PhD, and Jeffrey Watts, PhD, RM(NRCM), for offering advice and guidance as the document development committee worked through the different phases of advancing the document through the CLSI consensus process.

Shabbir Simjee, PhD
Chairholder, Document Development Committee on Generation, Presentation, and Application of Antimicrobial Susceptibility Test Data for Bacteria of Animal Origin
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Introduction .. 2

3 Standard Precautions .. 3

4 Terminology ... 3
 4.1 A Note on Terminology .. 3
 4.2 Definitions .. 3
 4.3 Abbreviations and Acronyms ... 5

5 Methods for Establishing Breakpoints ... 6
 5.1 Clinical Breakpoint Setting ... 6
 5.2 Epidemiological Cutoff Values ... 7
 5.3 Methods to Determine Epidemiological Cutoff Values .. 9
 5.4 Use of Epidemiological Cutoff Values in the Published Literature 10

6 Interpretation of Antimicrobial Susceptibility Test Data ... 11
 6.1 Application of Clinical Breakpoints and Epidemiological Cutoff Values 11
 6.2 Review of Data Generated From Modified CLSI Methods .. 13
 6.3 Issues Related to the Interpretation of Minimal Inhibitory Concentrations 16

7 Common Designs of Human Origin Bacterial Antimicrobial Resistance Surveillance Programs – A Learning Point for Veterinary Surveillance Programs 17

8 Sampling Considerations for Monitoring Resistance in Zoonotic Enteric Pathogens 28
 8.1 Sample Size ... 29
 8.2 Number of Organisms ... 30

9 Analysis and Presentation of Antimicrobial Susceptibility Test Results 30
 9.1 Isolate Listings for Important or Unlikely Resistance Phenotypes 30
 9.2 Statistics for Susceptibility Test Interpretations ... 30
 9.3 Frequency Distributions of Susceptibility Test Measurements 31
 9.4 Additional Minimal Inhibitory Concentration Statistics ... 35
 9.5 Antimicrobial Coresistance and Cross-Resistance ... 37
 9.6 Data Stratification ... 38
 9.7 Statistical Considerations .. 39

10 Multidrug Resistance .. 40
 10.1 Considerations for Defining Multidrug Resistance .. 41

11 Recommendations for Encouraging International Surveillance Harmonization 44

References ... 45

Appendix. Statistical Methods for Examining Percent Susceptible ... 48
Contents (Continued)

The Quality Management System Approach ...54

Related CLSI Reference Materials ...55
Foreword

Owing to the large number of national antimicrobial resistance (AMR) surveillance programs, harmonization among these various programs is becoming increasingly important. The aim of this report is to provide the perspective of the Subcommittee on Veterinary Antimicrobial Susceptibility Testing on the generation, presentation, and application of antimicrobial susceptibility testing (AST) data for bacteria of animal origin regarding these programs, and perhaps help form the basis for a global consensus.

This report provides guidance on aspects of AMR surveillance programs ranging from sample collection, AST methodology, data presentation, and data interpretation, including situations in which CLSI-approved veterinary-specific clinical breakpoints are not established. Efforts are made to highlight areas in which laboratories deviate from CLSI methodology and the subsequent misinterpretation of data that can occur. Comparisons are made among some of the more established veterinary AMR surveillance programs and among human AMR surveillance programs, along with indications of the usefulness of certain points of human AMR programs for veterinary programs. The anticipated users of this document are surveillance program managers, regulatory authorities, clinical laboratories, and academicians.

Key Words

Clinical breakpoints, coresistance, cross-resistance, epidemiological cutoff values, geometric mean, harmonization, MIC$_{50}$, MIC$_{90}$, multidrug resistance, surveillance
Generation, Presentation, and Application of Antimicrobial Susceptibility Test Data for Bacteria of Animal Origin; A Report

1 Scope

This report provides a review of current applications of susceptibility test data generated using CLSI methodology for bacteria of animal origin and recommendations for summarizing, presenting, and applying the data. More specifically, the report provides an overview of the CLSI veterinary antimicrobial susceptibility testing (VAST) approach to the use of reference methodology, quality control (QC), and establishment and use of clinical breakpoints and epidemiological cutoff values (ECVs). Recommendations for the presentation of minimal inhibitory concentrations (MICs) or zone inhibition data in frequency histograms and scatter plots are provided, in addition to recommendations for the use of ECVs and/or CLSI clinical breakpoints. A review of various applications of surveillance programs is provided, with clarification of descriptive summary statistics of MIC frequency histograms (eg, MIC\textsubscript{50}, MIC\textsubscript{90}, geometric mean), and recommended standardized approaches.

The report also provides a review of several select programs that monitor antimicrobial susceptibility in bacteria of animal origin (eg, Canadian Integrated Program for Antimicrobial Resistance Surveillance [CIPARS], Centre Européen d'Etudes pour la Santé Animale [CEESA], Danish Integrated Antimicrobial Resistance Monitoring and Research Programme [DANMAP], GERM-Vet, Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands [MARAN], US National Antimicrobial Resistance Monitoring System [NARMS]) with regard to methods and data presentation and interpretation. For comparison purposes, a similar review is provided for programs monitoring antimicrobial susceptibility in bacteria of human origin (eg, European Antimicrobial Resistance Surveillance Network [EARS-Net], SENTRY Antimicrobial Surveillance Program). This report is not intended to provide guidance for human antimicrobial surveillance programs.

Finally, consideration is given to the intended use of any antimicrobial resistance (AMR) surveillance program. The usual goal in collecting antimicrobial susceptibility data is to detect the early emergence of resistance for a given bacterial species/antimicrobial combination that may be used for the following purposes:

- Provide a basis for policy recommendations for animal and public health.
- Generate data that may guide the design of further studies.
- Provide information for prescribing practices and prudent-use recommendations.
- Determine the prevalence or trend in prevalence of reduced susceptibility (or resistance) to a certain antimicrobial in a defined population.
- Detect emergence of AMR (eg, particular phenotypes).
- Identify the need for potential intervention.
- Assess the impact of intervention(s).
- Identify the emergence of new mechanisms of resistance.