VET06
Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated From Animals

This document provides guidance for antimicrobial agent disk and dilution susceptibility testing, criteria for quality control testing, and breakpoints for fastidious and infrequently tested bacteria for veterinary use.

A CLSI supplement for global application.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated From Animals

Maria M. Traczewski, BS, MT(ASCP)
Michael T. Sweeney, MS
Donald J. Bade, BS
Thomas R. Fritsche, MD, PhD, FCAP, FIDSA
Brian V. Lubbers, DVM, PhD, DACVCP
Stefan Schwarz, DVM
Shabbir Simjee, PhD
Vijay K. Singu, DVM, PhD
Ching Ching Wu, DVM, PhD

Abstract

Susceptibility testing is indicated for any organism that contributes to an infectious process warranting antimicrobial chemotherapy. If the susceptibility of a bacterial pathogen to antimicrobial agents cannot be predicted based on the identity of the organism alone, in vitro antimicrobial susceptibility testing of the organism isolated from the disease processes in animals is indicated.

A variety of laboratory techniques can be used to measure the in vitro susceptibility of bacteria to antimicrobial agents. Clinical and Laboratory Standards Institute document VET06—Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated From Animals describes the standard disk diffusion method, as well as standard broth dilution (macrodilution and microdilution) and agar dilution techniques for infrequently isolated or fastidious bacteria from animals. It also includes procedures designed to standardize test performance. The performance, applications, and limitations of the current CLSI-recommended methods are described.

The tabular information in this document presents test conditions, QC recommendations, agents to consider for primary testing, and breakpoints. In an increasing number of compounds for which veterinary-specific breakpoints are not available, human breakpoints are used. As more veterinary-specific information becomes available, these changes will be incorporated into future revisions of this document.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Committee Membership

Subcommittee on Veterinary Antimicrobial Susceptibility Testing

Mark G. Papich, DVM, MS
Chairholder
College of Veterinary Medicine, North Carolina State University
USA

Brian V. Lubbers, DVM, PhD, DACVCP
Laboratory
Kansas State Veterinary Diagnostic
USA

Thomas R. Shryock, PhD
Antimicrobial Consultants, LLC
USA

Shabbir Simjee, PhD
Vice-Chairholder
Elanco Animal Health
United Kingdom

Marilyn N. Martínez, PhD
FDA Center for Veterinary Medicine
USA

Peter Silley, PhD
MB Consult Limited
United Kingdom

Dubraska V. Diaz-Campos, DVM, PhD
Washington State University
USA

Markus Rose, DVM, PhD
MSD Animal Health Innovation GmbH
Germany

Maria M. Traczewski, BS, MT(ASCP)
The Clinical Microbiology Institute
USA

Mike Apley, DVM, PhD
Kansas State University
USA

Stefan Schwarz, DVM
Freie Universität Berlin
Germany

John D. Turnidge, MD
Australian Commission on Safety and Quality in Health Care
Australia

Cynthia C. Knapp, MS
Thermo Fisher Scientific
USA

Marilyn N. Martinez, PhD
FDA Center for Veterinary Medicine
USA

Markus Rose, DVM, PhD
MSD Animal Health Innovation GmbH
Germany

Thomas R. Fritsche, MD, PhD, FACP, FIDSA
Marshfield Clinic
USA

Thomas R. Shryock, PhD
Antimicrobial Consultants, LLC
USA

Shabbir Simjee, PhD
Elanco Animal Health
United Kingdom

Vijay K. Singu, DVM, PhD
Central States Research Centre, Inc.
USA

Brian V. Lubbers, DVM, PhD, DACVCP
Laboratory
Kansas State Veterinary Diagnostic
USA

Ching Ching Wu, DVM, PhD
National Taiwan University Hospital
Taiwan

Donald J. Bade, BS
Microbial Research, Inc.
USA

Stefan Schwarz, DVM
Freie Universität Berlin
Germany

Staff

Clinical and Laboratory Standards Institute
USA

Thomas R. Fritsche, MD, PhD, FACP, FIDSA
Marshfield Clinic
USA

Shabbir Simjee, PhD
Elanco Animal Health
United Kingdom

Maria M. Traczewski, BS, MT(ASCP)
The Clinical Microbiology Institute
USA

Vijay K. Singu, DVM, PhD
Central States Research Centre, Inc.
USA

Joanne P. Christopher, MA, ELS
Editor

Michael A. Russell, MA
Editor

Tracy A. Dooley, MLT(ASCP)
Project Manager

Ching Ching Wu, DVM, PhD
National Taiwan University Hospital
Taiwan

Megan L. Tertel, MA, ELS
Editorial Manager
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii
Chapter 1: Introduction .. 1
 1.1 Scope .. 1
 1.2 Background ... 1
 1.3 Standard Precautions.. 6
 1.4 Terminology... 7
Chapter 2: Indications for Performing Susceptibility Tests ... 11
Chapter 3: Methods for Antimicrobial Susceptibility Testing .. 13
 3.1 Selection of Antimicrobial Agents .. 13
 3.2 Dilution Antimicrobial Susceptibility Testing .. 13
 3.3 Antimicrobial Disk Diffusion Susceptibility Testing ... 14
 3.4 Detection of Resistance to Some β-Lactams by Direct β-Lactamase Test 14
Chapter 4: Quality Control ... 15
 4.1 Purpose ... 15
 4.2 Minimum Laboratory Recommendations ... 15

Table 1. Aerobic Actinomycetes—Information and Breakpoints for Broth Microdilution Susceptibility Testing ... 16
Table 2. Anaerobic Bacteria and Breakpoints for Agar Dilution and Broth Microdilution Susceptibility Testing ... 20
Table 3. Bacillus spp.—Information and Breakpoints for Broth Microdilution Susceptibility Testing 24
Table 4. Brachyspira hyodysenteriae—Information and Breakpoints for Agar Dilution and Broth Microdilution Susceptibility Testing .. 28
Table 5. Campylobacter jejuni/coli—Information and Breakpoints for Broth Microdilution and Disk Diffusion Susceptibility Testing .. 30
Table 6. Corynebacterium spp. and Coryneforms—Information and Breakpoints for Broth Microdilution Susceptibility Testing .. 34
Table 7. Erysipelothrix rhusiopathiae—Information and Breakpoints for Broth Microdilution Susceptibility Testing .. 38
Table 8. Helicobacter pylori—Information and Breakpoints for Agar Dilution Susceptibility Testing 42
Table 9. Listeria spp.—Information and Breakpoints for Broth Microdilution Susceptibility Testing 44
Table 10. Melissococcus plutonius—Information and Breakpoints for Broth Microdilution and Disk Diffusion Susceptibility Testing .. 46
Table 11. Moraxella spp. (including M. bovis, M. ovis, M. bovoculi)—Information and Breakpoints for Broth Microdilution Susceptibility Testing .. 48
Table 12. Rapidly Growing Mycobacteria—Information and Breakpoints for Broth Microdilution Susceptibility Testing .. 50
VET06, 1st ed.

Contents (Continued)

Table 13. Paenibacillus larvae—Information and Breakpoints for Broth Microdilution and Disk Diffusion Susceptibility Testing ... 54
Table 14. Pasteurella spp. Other Than P. multocida—Information and Breakpoints for Broth Microdilution Susceptibility Testing ... 56
Table 15. Rhodococcus equi—Information and Breakpoints for Broth Microdilution Susceptibility Testing ... 58
Table 16. Trueperella pyogenes—Information and Breakpoints for Broth Microdilution Susceptibility Testing ... 62
Table 17. Gallibacterium anatis—Information and Breakpoints for Broth Microdilution Susceptibility Testing ... 66
Table 18. Acceptable Quality Control Ranges of Antimicrobial Disk Susceptibility Test Zone Diameters (mm) for Reference Strains on Mueller-Hinton Agar (Except Where Noted) .. 68
Table 19. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations for Broth Microdilution (µg/mL) for Reference Strains ... 70
Table 20A. Acceptable Quality Control Ranges of Minimal Inhibitory Concentration (µg/mL) for Anaerobic Reference Strains Using Agar Dilution ... 72
Table 20B. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations (µg/mL) for Anaerobic Reference Strains Using Broth Microdilution ... 73
Table 21A. Acceptable Quality Control Ranges of Antimicrobial Disk Susceptibility Test Zone Diameters (mm) for Testing Campylobacter jejuni ATCC® 33560 ... 74
Table 21B. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations (µg/mL) for the Agar Dilution Method of Testing Campylobacter jejuni ATCC® 33560 ... 74
Table 21C. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations (µg/mL) for the Broth Microdilution Method of Testing Campylobacter jejuni ATCC® 33560 ... 75
Table 22. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations (µg/mL) for Agar Dilution Methods (Mueller-Hinton Agar With Aged [≥ 2 Weeks Old] Sheep Blood) for Helicobacter pylori ... 76
Table 23. Acceptable Quality Control Ranges of Minimal Inhibitory Concentrations (µg/mL) When Testing Rapidly Growing Mycobacteria ... 78
Table 24. Acceptable Quality Control Ranges for Broth Microdilution Methods (Cation-Adjusted Mueller-Hinton Broth Supplemented With Lysed Horse Blood [2.5% to 5% v/v]) ... 80
Glossary I. Antimicrobial Class and Subclass Designations, Antimicrobial Agents, and Antimicrobial Resistance Mechanisms ... 82
Glossary II. Abbreviations Commonly Used for Antimicrobial Agents Incorporated Into Disks or Susceptibility Panels ... 86
Chapter 5: Conclusion ... 88
Chapter 6: Supplemental Information ... 88
References .. 89
Additional Resources ... 92
The Quality Management System Approach ... 98
Related CLSI Reference Materials ... 100
Foreword

In finalizing CLSI documents VET01 and VET01S, the Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) recognized that veterinary diagnostic laboratories often need to test many organisms for which there are no standardized test methods or breakpoints. Based on feedback from the user community, the subcommittee formed a working group to develop a document that is similar in scope to CLSI document M45. This new document provides veterinary diagnostic laboratories with recommendations for testing these veterinary pathogens, such as Moraxella and rapidly growing Mycobacterium, Corynebacterium, or Brachyspira. Continued user input will be critical to identifying organisms for which methods have been reported in the literature and that should be considered for inclusion in future editions of VET06.

This document was developed for the purpose of providing guidance to veterinary diagnostic, clinical, or public health microbiology laboratories regarding the performance of standardized susceptibility testing of infrequently isolated or fastidious bacteria. Potential agents of bioterrorism were included, because they are fastidious or infrequently encountered in most microbiology laboratories. Some organisms included are aerobic gram-negative bacilli that are not members of the family Enterobacteriaceae but may be tested by the standard CLSI broth microdilution or disk diffusion methods in the same manner as the much more commonly isolated Enterobacteriaceae. Some aerobic gram-positive cocci and bacilli that are periodically encountered by clinical laboratories may likewise be tested reliably by the standard CLSI minimal inhibitory concentration (MIC) or disk diffusion test methods in a manner analogous to Staphylococcus or Enterococcus spp. In addition, genera of fastidious gram-positive and gram-negative bacteria can be tested in the same manner as the streptococci, using blood-supplemented Mueller-Hinton media. For the purpose of this document, the term “fastidious” is used to describe bacteria that need media supplemented with blood or blood components and that possibly need an atmosphere other than ambient air (eg, with 5% CO₂) for acceptable growth. Because the standard CLSI media, reagents, and procedures can be used to test the organisms included in this document, the QC procedures, strains, and acceptable zone diameter and MIC limits that have been established through previous studies can be used for tests with the less common organisms that are included in this document. The working group used a thorough search of the published literature in conjunction with the members’ clinical experience to apply or adapt breakpoints from other organisms that could best be applied for interpreting tests of the less common organisms. Users of VET06 should be aware that the very extensive microbiological, clinical, and pharmacodynamic databases normally used for setting breakpoints by CLSI did not exist for the collection of infrequently isolated or fastidious veterinary organisms described. To facilitate further development of VET06, the working group requests laboratories that test these organisms to forward comments and suggestions for improvement with regards to the methods included herein (see specific request to laboratories below).

The use of test methods and reporting of susceptibility test data have become critically important in understanding resistance development in veterinary (target and zoonotic) pathogens and for the development of judicious use guidelines for veterinary antimicrobial agents. In particular, the Subcommittee on VAST has been concerned about mismatched methods and breakpoints that have been reported in the literature. Moreover, using epidemiological or microbiological cutoffs and reporting these data as equivalent to clinical breakpoints is also of concern to the subcommittee. In an effort to provide guidance on the development, implementation, and reporting of antimicrobial susceptibility data, CLSI document VET05 was developed.

It is important for users of VET06 to recognize that commercial susceptibility testing devices are not covered in this document. The methods described herein are generic reference procedures that can be used for routine susceptibility testing by clinical laboratories, or that can be used by clinical laboratories to evaluate commercial devices for possible routine use. Results generated by reference methods, such as those contained in CLSI documents, may be used by regulatory authorities to evaluate the performance of commercial systems as part of the approval process. Clearance by a regulatory authority indicates that the commercial susceptibility testing device provides susceptibility results that are substantially equivalent to
results generated using the reference methods for the organisms and antimicrobial agents described in the manufacturer’s approved package insert. Some laboratories could find that a commercial dilution, antibiotic gradient, colorimetric, turbidimetric, fluorometric, or other method is suitable for selective or routine use.

Request for Data on Fastidious Pathogens for Inclusion in Future Editions of VET06

The working group for VET06 would like to add the pathogens listed below to the next edition:

- *Bordetella avium*
- *Eikenella* spp.
- *Haemophilus parasuis*
- *Mycoplasma* spp.
- *Nicoletella semolina*

The working group is including the above list with hopes that laboratories with experience testing these organisms will send their methods and data to the VAST VET06 working group. Any information available can be submitted to CLSI directly at standard@clsi.org. In addition, any laboratories that would like to include other pathogens on the list for inclusion in future editions of VET06 may send their suggestions to CLSI.

NOTE: The content of this document is supported by the CLSI consensus process, and does not necessarily reflect the views of any single individual or organization.

Key Words

Agar dilution, antimicrobial agent, antimicrobial susceptibility, broth dilution, disk diffusion, microdilution, minimal inhibitory concentration
Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated From Animals

Chapter 1: Introduction

This chapter includes:

- Document’s scope and applicable exclusions
- Background information pertinent to the document’s content
- Standard precautions information
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the document
- Abbreviations and acronyms used in the document

1.1 Scope

CLSI documents M02, M07, VET01, and M100 describe standardized methods and breakpoints for antimicrobial susceptibility testing (AST) of common aerobic bacteria, including some fastidious organisms. However, there are a number of less frequently encountered or fastidious veterinary bacteria that are not covered in those CLSI documents. Some are organisms that may cause serious infections in companion and livestock animals. This document provides recommendations to microbiology laboratories for how and when to determine the susceptibility of these diverse organisms. VET06 also includes some fastidious or unusual organisms potentially associated with bioterrorism.

This document provides veterinary diagnostic laboratories with currently recommended antimicrobial agent disk and dilution susceptibility test methods for bacteria isolated from animals, criteria for QC testing, and breakpoints. The breakpoints are intended only to support therapeutic label claims for animal antimicrobial agent use and do not apply to label claims for disease prevention or performance enhancement. Additionally, the document provides a brief overview of the various antimicrobial classes and mechanisms of resistance to them, including specific tests for antimicrobial resistance.

This document does not cover commercial susceptibility testing devices.

1.2 Background

In order to have a positive effect on clinical outcomes, help maintain antimicrobial effectiveness, assist clinicians in using antimicrobial agents safely, and minimize the selection of resistant pathogens, laboratories should use a standardized, well-defined method for performing AST. A critical component of a veterinary AST (VAST) method is to enable a clinician to choose the appropriate antimicrobial agent for which there is likelihood of achieving a favorable clinical outcome and minimize an unfavorable clinical response. In other words, a susceptible result implies that the infection may be appropriately treated with the dosage regimen of an antimicrobial agent recommended for that type of infection and infecting species, whereas a VAST result of resistant implies that the isolate is not inhibited by the usually achievable