This document addresses procedures for determining the bias between two clinical methods, and the design of a method comparison experiment using split patient samples and data analysis.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Second Edition (Interim Revision)

Volume 30 Number 17

Jan S. Krouwer, Ph.D.
Daniel W. Tholen, M.S.
Carl C. Garber, Ph.D.
Henk M.J. Goldschmidt, Ph.D.
Martin Harris Kroll, M.D.
Kristian Linnet, M.D., Ph.D.
Kristen Meier, Ph.D.
Max Robinowitz, M.D.
John W. Kennedy

Abstract

Clinical and Laboratory Standards Institute document EP09-A2-IR—Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Second Edition (Interim Revision) is written for laboratorians as well as manufacturers. It describes procedures for determining the relative bias between two methods, and it identifies factors to be considered when designing and analyzing a method-comparison experiment using split patient samples. For carrying out method-comparison evaluations, an overview of the experiment, sample data recording and calculation sheets, and an overview flowchart and a detailed flowchart for preliminary data examination are included. As an additional aid, a sample scatter plot and bias plot are introduced for those who are unfamiliar with these procedures. The final section contains recommendations for manufacturers’ evaluation of bias and statement format for bias claims.

Suggested Citation

Proposed Guideline
January 1986

Tentative Guideline
April 1993

Approved Guideline
December 1995

Approved Guideline—Second Edition
September 2002

Approved Guideline—Second Edition (Interim Revision)
July 2010

ISBN 1-56238-731-6
ISSN 0273-3099
Committee Membership

The changes in this interim revision were approved by the Area Committee on Evaluation Protocols and the Board of Directors as follows:

Area Committee on Evaluation Protocols

Greg Cooper, CLS, MHA George S. Cembrowski, MD, PhD St. Louis, Missouri, USA St. Louis, Missouri, USA
Chairholder University of Alberta Hospital Lakshmi Vishnuvajjala, PhD FDA Ctr. for Devices/Rad. Health
Bio-Rad Laboratories, Inc., QSD Edmonton, Alberta, Canada Rockville, Maryland, USA
Division David L. Duewer, PhD David L. Duewer, PhD National Institute of Standards and Technology
Plano, Texas, USA Gaithersburg, Maryland, USA
Area Committee on Evaluation Protocols Jonathan Guy Middle, PhD Trust

R. Neill Carey, PhD, FACB University Hospital Birmingham NHS
Vice-Chairholder Birmingham, United Kingdom
Peninsula Regional Medical Center James F. Pierson-Perry Siemens Healthcare Diagnostics
Salisbury, Maryland, USA Newark, Delaware, USA

John Rex Astles, PhD, FACC, DABCC Mitchell G. Scott, PhD Washington University School of Medicine
Centers for Disease Control and Prevention Jeffrey R. Budd, PhD Beckman Coulter, Inc.
Atlanta, Georgia, USA Chaska, Minnesota, USA

Jeffrey R. Budd, PhD Beckman Coulter, Inc.

OFFICERS Chaska, Minnesota, USA

Janet K.A. Nicholson, PhD, Maria Carballo Health Canada
President Russia K. Enns, PhD Cepheid
Centers for Disease Control and Prof. Naotaka Hamasaki, MD, PhD Nagasaki International University
Prevention Jack Zakowski, PhD, FACC, Christopher M. Lehman, MD University of Utah Health Sciences Center
President-Elect Jack Zakowski, PhD, FACC, Christopher M. Lehman, MD University of Utah Health Sciences Center
Siemens Healthcare Diagnostics, Inc.

Jack Zakowski, PhD, FACC, W. Gregory Miller, PhD, W. Gregory Miller, PhD,
Secretary Treasurer Virginia Commonwealth University

Mary Lou Gantzer, PhD, FACC, Robert Rej, PhD New York State Department of Health
President-Elect Donald St.Pierre FDA Center for Devices and Radiological Health
Siemens Healthcare Diagnostics, Inc.

OFFICERS Michael Thein, PhD Roche Diagnostics GmbH
Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.

Mary Lou Gantzer, PhD, FACC, Donald St.Pierre FDA Center for Devices and Radiological Health
President-Elect Michael Thein, PhD Roche Diagnostics GmbH
Siemens Healthcare Diagnostics, Inc.
Acknowledgment

CLSI and the Area Committee on Evaluation Protocols gratefully acknowledge James Huntington and Simon Huntington, Co-founders, Analyse-it®, Leeds, United Kingdom, for their unwavering commitment and focused effort on the joint venture partnership with CLSI in the development of software to help laboratories easily implement the CLSI method evaluation protocols.

Special thanks go to Simon Huntington for painstakingly reviewing the statistics in EP09-A2 and applying his expert knowledge of statistical analysis for method validation to identify and offer solutions for the discrepancies and errors that have been corrected in this interim revision.

Jeffrey R. Budd, PhD, Beckman Coulter, Inc., Chaska, Minnesota, USA, serving as Chairholder of the Subcommittee on Method Comparison and Bias Estimation Using Patient Samples, reviewed the reported issues and confirmed the recommended resolutions, which were approved by the Area Committee on Evaluation Protocols.
Committee Membership

Area Committee on Evaluation Protocols

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan S. Krouwer, Ph.D.</td>
<td>Krouwer Consulting</td>
</tr>
<tr>
<td>Chairholder</td>
<td>Sherborn, Massachusetts</td>
</tr>
<tr>
<td>Daniel W. Tholen, M.S.</td>
<td>Statistical Services</td>
</tr>
<tr>
<td>Vice-Chairholder</td>
<td>Traverse City, Michigan</td>
</tr>
<tr>
<td>Carl C. Garber, Ph.D.</td>
<td>Quest Diagnostics Assurance</td>
</tr>
<tr>
<td></td>
<td>Teterboro, New Jersey</td>
</tr>
<tr>
<td>Henk M.J. Goldschmidt, Ph.D.</td>
<td>Tilburg, The Netherlands</td>
</tr>
<tr>
<td>Martin Harris Kroll, M.D.</td>
<td>Dallas Veterans Affairs Medical Center</td>
</tr>
<tr>
<td></td>
<td>Dallas, Texas</td>
</tr>
<tr>
<td>Kristian Linnet, M.D., Ph.D.</td>
<td>Psychiatric University Hospital</td>
</tr>
<tr>
<td></td>
<td>Risskov, Denmark</td>
</tr>
<tr>
<td>Kristen Meier, Ph.D.</td>
<td>FDA Center for Devices/Rad. Health</td>
</tr>
<tr>
<td></td>
<td>Rockville, Maryland</td>
</tr>
<tr>
<td>Max Robinowitz, M.D.</td>
<td>FDA Center for Devices/Rad. Health</td>
</tr>
<tr>
<td></td>
<td>Rockville, Maryland</td>
</tr>
</tbody>
</table>

Advisors

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Neill Carey, Ph.D.</td>
<td>Peninsula Regional Medical Center</td>
</tr>
<tr>
<td></td>
<td>Salisbury, Maryland</td>
</tr>
<tr>
<td>Patricia E. Garrett, Ph.D.</td>
<td>BBI Clinical Laboratories</td>
</tr>
<tr>
<td></td>
<td>New Britain, Connecticut</td>
</tr>
<tr>
<td>John W. Kennedy</td>
<td>Medstat Consultants</td>
</tr>
<tr>
<td></td>
<td>Palo Alto, California</td>
</tr>
<tr>
<td>Jacob (Jack) B. Levine, M.B.A.</td>
<td>Bayer Corporation</td>
</tr>
<tr>
<td></td>
<td>Tarrytown, New York</td>
</tr>
</tbody>
</table>

Staff Liaison

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer K. McGeary, M.T.(ASCP), M.S.H.A.</td>
<td>NCCLS</td>
</tr>
<tr>
<td></td>
<td>Wayne, Pennsylvania</td>
</tr>
</tbody>
</table>

Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrice E. Polgar</td>
<td>NCCLS</td>
</tr>
<tr>
<td></td>
<td>Wayne, Pennsylvania</td>
</tr>
</tbody>
</table>

Assistant Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donna M. Wilhelm</td>
<td>NCCLS</td>
</tr>
<tr>
<td></td>
<td>Wayne, Pennsylvania</td>
</tr>
</tbody>
</table>
Acknowledgements

The Area Committee on Evaluation Protocols would also like to recognize the valuable contributions of the members and advisors of the Working Group on Method Comparison and Bias Estimation that developed the first approved edition of this guideline.

John W. Kennedy
R. Neill Carey, Ph.D.
Richard B. Coolen, Ph.D.
Carl C. Garber, Ph.D.
Henry T. Lee, Jr.
Jacob B. Levine
Iris M. Osberg
Active Membership
(as of 1 July 2002)

Sustaining Members
Abbott Laboratories
Abbott Laboratories, MediSense Products
Acrometrix Corporation
Ammirati Regulatory Consulting
AstraZeneca
AstraZeneca R & D
Bayer
Bayer Medical Ltd.
Bayer Corporation – Elkhart, IN
Bayer Corporation – Tarrytown, NY
Bayer Corporation – West Haven, CT
BD
bioMérieux, Inc.
CLMA
College of American Pathologists
College of American Pathologists
colleges de Análisis Clínicos
Sustaining Members
Abbott Laboratories
American Association for Clinical Chemistry
Beckman Coulter, Inc.
BD and Company
bioMérieux, Inc.
CLMA
College of American Pathologists
GlaxoSmithKline
Nippon Becton Dickinson Co., Ltd.
Ortho-Clinical Diagnostics, Inc.
Pfizer Inc
Roche Diagnostics, Inc.

Professional Members
AISAR-Associazione Italiana per lo Studio degli Studi
American Academy of Family Physicians
American Association for Clinical Chemistry
American Association for Respiratory Care
American Chemical Society
American Medical Technologists
American Public Health Association
American Society for Clinical Laboratory Science
American Society of Hematology
American Society for Microbiology
American Type Culture Collection, Inc.
Asociación Española Primera de Socorros (Uruguay)
Asociacion Mexicana de Bioquímica Clinica A.C.
British Society for Antimicrobial Chemotherapy
CADIME-Camera De Instituciones De Diagnostico Medico
Canadian Society for Medical Laboratory Science—Société Canadienne de Science de Laboratoire Médical
Clinical Laboratory Management Association
COLA
College of American Pathologists

Government Members
Association of Public Health Laboratories
Armed Forces Institute of Pathology
BC Centre for Disease Control
Centers for Disease Control and Prevention
Centers for Medicare & Medicaid Services/CLIA Program
Centers for Medicare & Medicaid Services
Chinese Committee for Clinical Laboratory Standards
Commonwealth of Pennsylvania Bureau of Laboratories

Industry Members
AB Biodisk
Abbott Laboratories
Abbott Laboratories, MediSense Products
Acrometrix Corporation
Ammirati Regulatory Consulting
Anaerobe Systems
Asséssor
AstraZeneca
AstraZeneca R & D
Bayer
Bayer Corporation – Elkhart, IN
Bayer Corporation – Tarrytown, NY
Bayer Corporation – West Haven, CT
BD
<table>
<thead>
<tr>
<th>Location</th>
<th>Location</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegheny General Hospital (PA)</td>
<td>Allegheny University of the Health Sciences (PA)</td>
<td>Allina Health System (MN)</td>
</tr>
<tr>
<td>Alton Ochsner Medical Foundation (LA)</td>
<td>American Medical Laboratories (VA)</td>
<td>Antwerp University Hospital (Belgium)</td>
</tr>
<tr>
<td>Arkansas Department of Health</td>
<td>ARUP at University Hospital (UT)</td>
<td>Armed Forces Research Institute of Medicine Science (APO, AP)</td>
</tr>
<tr>
<td>Associated Regional & University Pathologists (UT)</td>
<td>Aurora Consolidated Laboratories (WI)</td>
<td>Azienda Ospedale Di Lecco (Italy)</td>
</tr>
<tr>
<td>Bermuda Hospitals Board</td>
<td>Bo Ali Hospital (Iran)</td>
<td>British Columbia Cancer Agency (Vancouver, BC, Canada)</td>
</tr>
<tr>
<td>Brooks Air Force Base (TX)</td>
<td>Broward General Medical Center (FL)</td>
<td>Calgary Laboratory Services (Canada)</td>
</tr>
<tr>
<td>Carilion Consolidated Laboratory (VA)</td>
<td>Cathay General Hospital (Taiwan)</td>
<td>CB Healthcare Complex (Sydney, NS, Canada)</td>
</tr>
<tr>
<td>Central Peninsula General Hospital (AK)</td>
<td>Central Texas Veterans Health Care System</td>
<td>Centre Hospitalier Regional del la Citadelle (Belgium)</td>
</tr>
<tr>
<td>Centro Diagnostico Italiano (Milano, Italy)</td>
<td>Champlain Valley Physicians Hospital (NY)</td>
<td>Chang Gung Memorial Hospital (Taiwan)</td>
</tr>
<tr>
<td>Changi General Hospital (Singapore)</td>
<td>Children’s Hospital of Philadelphia (PA)</td>
<td>Children’s Medical Center of Dallas (TX)</td>
</tr>
<tr>
<td>Children’s Hospital (NE)</td>
<td>Children’s Hospital & Clinics (MN)</td>
<td>Children’s Hospital Medical Center (Akron, OH)</td>
</tr>
<tr>
<td>Children’s Hospital Medical Center (Fort Smith, AR)</td>
<td>Children’s Medical Center of Dallas (TX)</td>
<td>Clarian Health–Methodist Hospital (IN)</td>
</tr>
<tr>
<td>Clendo Lab (Puerto Rico)</td>
<td>Clinical Laboratory Partners, LLC (CT)</td>
<td>CLSI Laboratories (PA)</td>
</tr>
<tr>
<td>Columbia Regional Hospital (MO)</td>
<td>Commonwealth of Kentucky</td>
<td>Community Hospital of Lancaster (PA)</td>
</tr>
<tr>
<td>CompuNet Clinical Laboratories (OH)</td>
<td>Cook County Hospital (IL)</td>
<td>Cook Children’s Medical Center (TX)</td>
</tr>
<tr>
<td>Covance Central Laboratory Services (IN)</td>
<td>Danish Veterinary Laboratory (Denmark)</td>
<td>Danville Regional Medical Center (VA)</td>
</tr>
<tr>
<td>Delaware Public Health Laboratory Department of Health & Community Services (New Brunswick, Canada)</td>
<td>DesPeres Hospital (MO)</td>
<td>Detroit Health Department (MI)</td>
</tr>
<tr>
<td>Diagnosticos da América S/A (Brazil)</td>
<td>Dr. Everett Chalmers Hospital (New Brunswick, Canada)</td>
<td>Doctors Hospital (Bahamas)</td>
</tr>
<tr>
<td>Duke University Medical Center (NC)</td>
<td>E.A. Conway Medical Center (LA)</td>
<td>Eastern Maine Medical Center</td>
</tr>
<tr>
<td>East Side Clinical Laboratory (RI)</td>
<td>Eastern Health (Vic., Australia)</td>
<td>Elyria Memorial Hospital (OH)</td>
</tr>
<tr>
<td>Emory University Hospital (GA)</td>
<td>Esoterix Center for Infectious Disease (TX)</td>
<td>Fairview–University Medical Center (MN)</td>
</tr>
<tr>
<td>Esoterix Center for Infectious Disease (TX)</td>
<td>Fairview-University Medical Center (MN)</td>
<td>Federal Medical Center (MN)</td>
</tr>
<tr>
<td>Florida Hospital East Orlando</td>
<td>Foothills Hospital (Calgary, AB, Canada)</td>
<td>Fort St. John General Hospital (Fort St. John, BC, Canada)</td>
</tr>
<tr>
<td>Fresno Community Hospital and Medical Center</td>
<td>Fresno Medical Care/Spectra East (NJ)</td>
<td>Frye Regional Medical Center (NC)</td>
</tr>
<tr>
<td>Gambrer Healthcare Laboratory Services (FL)</td>
<td>Gateway Medical Center (TN)</td>
<td>Geisinger Medical Center (PA)</td>
</tr>
<tr>
<td>Geisinger Medical Center (PA)</td>
<td>Grady Memorial Hospital (GA)</td>
<td>Guthrie Clinic Laboratories (PA)</td>
</tr>
<tr>
<td>Hahnemann University Hospital (PA)</td>
<td>Harris Methodist Erath County (TX)</td>
<td>Harris Methodist Fort Worth (TX)</td>
</tr>
<tr>
<td>Hartford Hospital (CT)</td>
<td>Headwaters Health Authority (Alberta, Canada)</td>
<td>Health Network Lab (PA)</td>
</tr>
<tr>
<td>Health Partners Laboratories (VA)</td>
<td>Heartland Regional Medical Center (MO)</td>
<td>Highlands Regional Medical Center (FL)</td>
</tr>
<tr>
<td>Hoag Memorial Hospital Presbyterian (CA)</td>
<td>Holmes Regional Medical Center (FL)</td>
<td>Holzer Medical Center (OH)</td>
</tr>
<tr>
<td>Hotel Dieu Hospital (Windsor, ON, Canada)</td>
<td>Houston Medical Center (GA)</td>
<td>Huddinge University Hospital (Sweden)</td>
</tr>
<tr>
<td>Hurley Medical Center (MI)</td>
<td>Indiana State Board of Health</td>
<td>Indiana University Institute of Medical and Veterinary Science (Australia)</td>
</tr>
<tr>
<td>International Health Management Associates, Inc. (IL)</td>
<td>Jackson Memorial Hospital (FL)</td>
<td>Jersey Shore Medical Center (NJ)</td>
</tr>
<tr>
<td>John C. Lincoln Hospital (AZ)</td>
<td>John F. Kennedy Medical Center (NJ)</td>
<td>John Peter Smith Hospital (TX)</td>
</tr>
<tr>
<td>Kadlec Medical Center (WA)</td>
<td>Kaiser Permanente Medical Care (CA)</td>
<td>Kaiser Permanente (MD)</td>
</tr>
<tr>
<td>Kantonsspital (Switzerland)</td>
<td>Kantonsspital (Switzerland)</td>
<td>Kantonsspital (Switzerland)</td>
</tr>
<tr>
<td>Keller Army Community Hospital (NY)</td>
<td>Kenora–Rainy River Regional Laboratory Program (Ontario, Canada)</td>
<td></td>
</tr>
<tr>
<td>Number 17</td>
<td>EP09-A2-IR</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Kern Medical Center (CA)</td>
<td>Michigan Department of Community Health</td>
<td></td>
</tr>
<tr>
<td>Kimball Medical Center (NJ)</td>
<td>Mississippi Baptist Medical Center</td>
<td></td>
</tr>
<tr>
<td>King Faisal Specialist Hospital (Saudi Arabia)</td>
<td>Monte Tabor – Centro Italo – Brazilian de Promacao (Brazil)</td>
<td></td>
</tr>
<tr>
<td>King Khalid National Guard Hospital (Saudi Arabia)</td>
<td>Montreal Children’s Hospital (Canada)</td>
<td></td>
</tr>
<tr>
<td>King’s Daughter Medical Center (KY)</td>
<td>Montreal General Hospital (Canada)</td>
<td></td>
</tr>
<tr>
<td>Klinični Center (Slovenia)</td>
<td>MRL Pharmaceutical Services, Inc. (VA)</td>
<td></td>
</tr>
<tr>
<td>Laboratories at Bonfils (CO)</td>
<td>MRL Reference Laboratory (CA)</td>
<td></td>
</tr>
<tr>
<td>Laboratoire de Santé Publique du Quebec (Canada)</td>
<td>Nassau County Medical Center (NY)</td>
<td></td>
</tr>
<tr>
<td>Laboratório Fleury S/C Ltda. (Brazil)</td>
<td>National Institutes of Health (MD)</td>
<td></td>
</tr>
<tr>
<td>Laboratory Corporation of America (NJ)</td>
<td>Naval Hospital – Corpus Christi (TX)</td>
<td></td>
</tr>
<tr>
<td>Laboratory Corporation of America (MO)</td>
<td>Naval Surface Warfare Center (IN)</td>
<td></td>
</tr>
<tr>
<td>LAC and USC Healthcare Network (CA)</td>
<td>Nebraska Health System</td>
<td></td>
</tr>
<tr>
<td>Lakeland Regional Medical Center (FL)</td>
<td>New Britain General Hospital (CT)</td>
<td></td>
</tr>
<tr>
<td>Lancaster General Hospital (PA)</td>
<td>New England Fertility Institute (CT)</td>
<td></td>
</tr>
<tr>
<td>Langley Air Force Base (VA)</td>
<td>New Mexico VA Health Care System</td>
<td></td>
</tr>
<tr>
<td>LeBonheur Children’s Medical Center (TN)</td>
<td>North Carolina State Laboratory of Public Health</td>
<td></td>
</tr>
<tr>
<td>L’Hotel-Dieu de Quebec (Canada)</td>
<td>North Shore – Long Island Jewish Health System Laboratories (NY)</td>
<td></td>
</tr>
<tr>
<td>Libero Instituto Univ. Campus BioMedico (Italy)</td>
<td>Northwestern Memorial Hospital (IL)</td>
<td></td>
</tr>
<tr>
<td>Louisiana State University Medical Center</td>
<td>O.L. Vrouwzijenhuis (Belgium)</td>
<td></td>
</tr>
<tr>
<td>Maccabi Medical Care and Health Fund (Israel)</td>
<td>Ordre professionnel des technologistes médicaux du Quebec</td>
<td></td>
</tr>
<tr>
<td>Magee Womens Hospital (PA)</td>
<td>Ospedali Riuniti (Italy)</td>
<td></td>
</tr>
<tr>
<td>Malcolm Grow USAF Medical Center (MD)</td>
<td>The Ottawa Hospital (Ottawa, ON, Canada)</td>
<td></td>
</tr>
<tr>
<td>Manitoba Health (Winnipeg, Canada)</td>
<td>Our Lady of Lourdes Hospital (NJ)</td>
<td></td>
</tr>
<tr>
<td>Martin Luther King/Drew Medical Center (CA)</td>
<td>Our Lady of the Resurrection Medical Center (IL)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts General Hospital (Microbiology Laboratory)</td>
<td>Pathology and Cytology Laboratories, Inc. (KY)</td>
<td></td>
</tr>
<tr>
<td>MDS Metro Laboratory Services (Burnaby, BC, Canada)</td>
<td>The Permanente Medical Group (CA)</td>
<td></td>
</tr>
<tr>
<td>Medical College of Virginia Hospital</td>
<td>Piedmont Hospital (GA)</td>
<td></td>
</tr>
<tr>
<td>Medicare/Medicaid Certification, State of North Carolina</td>
<td>Pikeville Methodist Hospital (KY)</td>
<td></td>
</tr>
<tr>
<td>Memorial Medical Center (IL)</td>
<td>Pocono Hospital (PA)</td>
<td></td>
</tr>
<tr>
<td>Memorial Medical Center (LA)</td>
<td>Presbyterian Hospital of Dallas (TX)</td>
<td></td>
</tr>
<tr>
<td>Napoleon Avenue</td>
<td>Queen Elizabeth Hospital (Prince Edward Island, Canada)</td>
<td></td>
</tr>
<tr>
<td>Methodist Hospital (TX)</td>
<td>Queensland Health Pathology Services (Australia)</td>
<td></td>
</tr>
<tr>
<td>Methodist Hospitals of Memphis (TN)</td>
<td>Quest Diagnostics Incorporated (CA)</td>
<td></td>
</tr>
<tr>
<td>MetroHealth Medical Center (OH)</td>
<td>Quintiles Laboratories, Ltd. (GA)</td>
<td></td>
</tr>
<tr>
<td>Reid Hospital & Health Care Services (IN)</td>
<td>Regions Hospital</td>
<td></td>
</tr>
<tr>
<td>Research Medical Center (MO)</td>
<td>Rex Healthcare (NC)</td>
<td></td>
</tr>
<tr>
<td>Rhode Island Department of Health Laboratories</td>
<td>Riyadh Armed Forces Hospital (Saudi Arabia)</td>
<td></td>
</tr>
<tr>
<td>Royal Columbian Hospital (New Westminster, BC, Canada)</td>
<td>Sacred Heart Hospital (MD)</td>
<td></td>
</tr>
<tr>
<td>Saint Mary’s Regional Medical Center (NV)</td>
<td>Saint Mary of the Plains Hospital (TX)</td>
<td></td>
</tr>
<tr>
<td>St. Alexius Medical Center (ND)</td>
<td>St. Mary’s Hospital & Medical Center (CO)</td>
<td></td>
</tr>
<tr>
<td>St. Anthony Hospital (CO)</td>
<td>St. Paul’s Hospital (Vancouver, BC, Montreal)</td>
<td></td>
</tr>
<tr>
<td>St. Anthony’s Hospital (FL)</td>
<td>St. Vincent Medical Center (CA)</td>
<td></td>
</tr>
<tr>
<td>St. Barnabas Medical Center (NJ)</td>
<td>Ste. Justine Hospital (Montreal, PQ, Canada)</td>
<td></td>
</tr>
<tr>
<td>St-Eustache Hospital (Quebec, Canada)</td>
<td>Salina Regional Health Center (KS)</td>
<td></td>
</tr>
<tr>
<td>St. Francis Medical Ctr. (CA)</td>
<td>San Francisco General Hospital (CA)</td>
<td></td>
</tr>
<tr>
<td>St. John Hospital and Medical Center (MI)</td>
<td>Santa Clara Valley Medical Center (CA)</td>
<td></td>
</tr>
<tr>
<td>St. John Regional Hospital (St. John, NB, Canada)</td>
<td>Seoul Nat’l University Hospital (Korea)</td>
<td></td>
</tr>
<tr>
<td>St. Joseph Hospital (NE)</td>
<td>Shanghai Center for the Clinical Laboratory (China)</td>
<td></td>
</tr>
<tr>
<td>St. Joseph’s Hospital – Marshfield Clinic (WI)</td>
<td>South Bend Medical Foundation (IN)</td>
<td></td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital (TN)</td>
<td>Southwest Texas Methodist Hospital (TX)</td>
<td></td>
</tr>
<tr>
<td>St. Luke’s Regional Medical Center (IA)</td>
<td>South Western Area Pathology Service (Australia)</td>
<td></td>
</tr>
<tr>
<td>St. Mary of the Plains Hospital (TX)</td>
<td>Southern Maine Medical Center Specialty Laboratories, Inc. (CA)</td>
<td></td>
</tr>
</tbody>
</table>
Stanford Hospital and Clinics (CA)
State of Washington Department of Health
Stony Brook University Hospital (NY)
Stormont-Vail Regional Medical Center (KS)
Sun Health-Boswell Hospital (AZ)
Sunrise Hospital and Medical Center (NV)
Swedish Medical Center – Providence Campus (WA)
Tampa General Hospital (FL)
Temple University Hospital (PA)
Tenet Odessa Regional Hospital (TX)
The Toledo Hospital (OH)
Touro Infirmary (LA)
Trident Regional Medical Center (SC)
Tripler Army Medical Center (HI)
Truman Medical Center (MO)
UCSF Medical Center (CA)
UNC Hospitals (NC)
University College Hospital (Galway, Ireland)

University Hospital (Gent) (Belgium)
University Hospitals of Cleveland (OH)
The University Hospitals (OK)
University of Alabama-Birmingham Hospital
University of Alberta Hospitals (Canada)
University of Colorado Health Science Center
University of Chicago Hospitals (IL)
University of Illinois Medical Center
University of the Ryukyu (Japan)
University of Texas M.D. Anderson Cancer Center
University of Virginia Medical Center
University of Washington
UZ-KUL Medical Center (Belgium)
VA (Denver) Medical Center (CO)
Virginia Department of Health
VA (Kansas City) Medical Center (MO)
VA (Western NY) Healthcare System

VA (San Diego) Medical Center (CA)
VA (Tuskegee) Medical Center (AL)
VA Outpatient Clinic (OH)
Veje Hospital (Denmark)
Washington Adventist Hospital (MD)
Washoe Medical Center Laboratory (NV)
West Jefferson Medical Center (LA)
West Shore Medical Center (MI)
Wilford Hall Medical Center (TX)
William Beaumont Army Medical Center (TX)
William Beaumont Hospital (MI)
Williamsburg Community Hospital (VA)
Winn Army Community Hospital (GA)
Winnipeg Regional Health Authority (Winnipeg, Canada)
Wishard Memorial Hospital (IN)
Yonsei University College of Medicine (Korea)
York Hospital (PA)

OFFICERS

Donna M. Meyer, Ph.D., President
CHRISTUS Health

Thomas L. Hearn, Ph.D., President Elect
Centers for Disease Control and Prevention

Emil Voelkert, Ph.D., Secretary
Roche Diagnostics GmbH

F. Alan Andersen, Ph.D., Immediate Past President
Cosmetic Ingredient Review

John V. Bergen, Ph.D., Executive Director

BOARD OF DIRECTORS

Susan Blonshine, RRT, RPFT, FAARC
TechEd

Wayne Brinster
BD

Kurt H. Davis, FCSMLS, CAE
Canadian Society for Medical Laboratory Science

Lillian J. Gill, M.S.
FDA Center for Devices and Radiological Health

Robert L. Habig, Ph.D.
Habig Consulting Group

Carolyn D. Jones, J.D., M.P.H.
AdvaMed

Tadashi Kawai, M.D., Ph.D.
International Clinical Pathology Center

J. Stephen Kroger, M.D., FACP
COLA

Willie E. May, Ph.D
National Institute of Standards and Technology

Gary L. Myers, Ph.D.
Centers for Disease Control and Prevention

Barbara G. Painter, Ph.D.
Bayer Corporation (Retired)

Judith A. Yost, M.A., M.T.(ASCP)
Centers for Medicare & Medicaid Services
Contents (Continued)

8 Manufacturer Modifications .. 20
 8.1 Experimental Design .. 20
 8.2 Data Analysis .. 20
 8.3 Statement of Bias Performance Claims .. 20

References ... 24

Appendix A. Sample Data Recording Sheet ... 25
Appendix B. Scatter Plots Derived from Example .. 27
Appendix C. Calculation Example ... 31
Appendix D. Calculation of Deming Slope ... 36
Summary of Comments and Working Group Responses ... 37
Summary of Delegate Comments and Committee Responses ... 51
Related CLSI Publications .. 54
Interim Revision Changes to EP09-A2

Section 1.2
- Added definition “\(\bar{x}_i \)” the average of the \(x_i \) replicates
- Added definition “\(\bar{y}_i \)” the average of the \(y_i \) replicates
- Definition “\(x_{ij} \) or \(y_{ij} \)” corrected by changing “run” to “sample”
- Definition “\(x \) or \(y \)” clarified by addition of the term “overall”
- Definition \(s_{ij, x} \) clarified by adding (standard deviation of the residuals)

Sections 4.1 and 4.2
- Presentation of symbols standardized for consistency (ie, upper case “X” and “Y” changed to lower case, as appropriate)

Formula Corrections:

<table>
<thead>
<tr>
<th>Summation ((\sum)) equations clearly defined with the index (i) or (j) and their range value</th>
<th>Subscript (j) changed to (i)</th>
<th>Intermediate step added for clarity</th>
<th>Subscript (ij) changed to (i)</th>
<th>(y) bar added to denominator</th>
<th>Subscript (m) changed to (i)</th>
<th>Bar added to (x) and/or (y) in numerator</th>
<th>Change SD to (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Affected by Correction</td>
<td>10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 25, 27, 28 (now 29), 29 (now 30), 31 (now 32)</td>
<td>13, 17, 23, 25</td>
<td>14, 15, 19, 20</td>
<td>22, 24, 25</td>
<td>13</td>
<td>28 (now 29), 29 (now 30), 31 (now 32)</td>
<td>28 (now 29), 29 (now 30), 31 (now 32)</td>
</tr>
</tbody>
</table>

Section 5.1
- First sentence – term \((x_{ij} - y_{ij}) \) corrected to \((\bar{x}_i, y_{ij}) \)
- Formula 16 – Equation was mathematically incorrect and has been replaced with the correct formula

Section 6.1
- First paragraph, last sentence rewritten for clarity and \((\bar{x}_j, y_{ij}) \) changed to \((\bar{x}_i, y_{ij}) \)
- Formula 27 redisplayed to handle using individual replicates
- Formula 28 added to handle using sample averages

Sections 6.2 and 6.3
- Reference to “m” dummy subscript deleted, and \(x \) and \(y \) changed to \(\bar{x} \) and \(\bar{y} \)
- Note added at end of section regarding dealing with replicates

Appendix B. Scatter Plots Derived from Example
- Corrected: Graph B2. Scatter Plot for All Results From Example

Appendix C. Calculation Example
- C3. Adequate Range Test-Correlation (Section 4.5) – Data regenerated based on corrected formula
- C4. Regression Parameter Estimates (Section 5.1) – Data regenerated based on corrected formula
- C5. Residuals and Standard Error of Estimate (\(s_{y.x} \)) (Section 6.1) – Data regenerated based on corrected formula
Foreword

The current literature contains many examples of user and manufacturer product evaluations, with many different experimental and statistical procedures for comparing two methods that measure the same analyte. This methodologic variety has caused confusion, and users have reported that comparisons often lack sufficient data and description to be reproducible.

There has also been an increasing awareness that the scope of evaluation procedures appropriate for manufacturers of diagnostic devices is not always appropriate for their users. The manufacturer is concerned with establishing valid and achievable performance claims for bias when compared with a generally accepted standard or reference method. The user might wish to compare a candidate method with a different one than the manufacturer used in establishing the bias claims. The scope of the experimental and data-handling procedures for these two purposes can often differ.

Therefore, in preparing this document, the working group drew on the experience of users and representatives of industry, statisticians, and laboratory and medical personnel. Because of the many in vitro diagnostic methods and kits now available, the working group realizes that a single experimental design is not appropriate for all types of user and manufacturer method comparisons. Therefore, this guideline was developed primarily to give conceptual help in structuring an experiment for comparing two methods. To illustrate representative duration, procedures, materials, methods of quality control, statistical data handling, and interpretation of results, an example experiment is presented.

Throughout the development of this protocol, the working group had to decide which procedural and statistical methods to recommend in the example experiment. To respond to the needs of laboratorians and manufacturers, the working group combined input from users of analytical methods, manufacturers of these methods, and representatives of regulatory agencies. The working group also included the recommendations necessary for a scientifically valid comparison. Compromises were necessary to accommodate both the simplicity of operation protocol and the complexity of design and statistical calculations necessary for valid conclusions. This document is adaptable within a wide range of analytes and device complexity.

The focus of this document is the independent establishment of bias performance characteristics. If appropriate, the user is then free to compare these performance estimates with either the manufacturer's labeled claims or the user's own internal criteria.

The working group believes that standard experimental and statistical procedures in user method comparisons will make such evaluations more reproducible and reflective of actual performance, and the statements of evaluation results considerably more reliable. Also, the misuse and misinterpretation of statistical methods, such as regression and correlation, involved in comparing in vitro diagnostic devices can seriously impair the usefulness of such evaluations. Therefore, this document is intended to promote the effective use of statistical analysis and data reporting.

Manufacturers of laboratory devices are encouraged to use this guideline to establish and standardize their bias performance claims. Many different forms have been used for such claims, and they have not always been sufficiently specific to allow user verification.

Key Words

Bias, evaluation protocol, experimental design, linear regression, method comparison, quality control, residuals
The Quality System Approach

NCCLS subscribes to a quality system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents through a gap analysis. The approach is based on the model presented in the most current edition of NCCLS HS1—A Quality System Model for Health Care. The quality system approach applies a core set of “quality system essentials (QSEs),” basic to any organization, to all operations in any healthcare service’s path of workflow. The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The quality system essentials (QSEs) are:

QSEs
- Documents & Records
- Organization
- Personnel
- Equipment
- Purchasing & Inventory
- Process Control
- Information Management
- Occurrence Management
- Assessment
- Process Improvement
- Service & Satisfaction
- Facilities & Safety

EP09-A2-IR Addresses the following Quality System Essentials (QSEs)

<table>
<thead>
<tr>
<th>Documents & Records</th>
<th>Organization</th>
<th>Personnel</th>
<th>Equipment</th>
<th>Purchasing & Inventory</th>
<th>Process Control</th>
<th>Information Management</th>
<th>Occurrence Management</th>
<th>Assessment</th>
<th>Process Improvement</th>
<th>Service & Satisfaction</th>
<th>Facilities & Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from NCCLS document HS1—A Quality System Model for Health Care.
1 Introduction and Scope

This document provides both users and manufacturers of clinical laboratory devices with guidance for designing an experiment to evaluate the bias between two methods that measure the same analyte. Ideally, a test (or candidate) method should be compared with a reference method. For users, the comparative method is often the current routine method, however, and the purpose of the evaluation is to determine if the two methods yield equivalent results within the statistical power of the experiment. In this case, determining whether the test method is a suitable replacement for a current method is the primary concern.

This guideline allows the estimation of the bias (expected difference) between two methods at various concentrations. If the comparative method is the same one used by the manufacturer in the statement of claims, it is possible to compare statistically the experimental results to the manufacturer's claims to verify acceptable performance.

1.1 Overview of the General Comparison Experiment

Evaluating an analytical method requires the following:

- Sufficient time for the operators to become familiar with the device's operation and maintenance procedures.
- Sufficient time for the operators to become familiar with the evaluation protocol.
- Assurance that both the test and the comparative methods are in proper quality control throughout the evaluation period.
- Sufficient data to ensure representative results for both the test and the comparative methods. (What constitutes sufficient data will depend on the precision and interference effects of the two methods, the amount of bias between the two methods, the range of sample analyte values available, and the medical requirements of the test.)

During the device familiarization period, the operators of the test and comparative methods must become familiar with all aspects of set-up, operation, maintenance, trouble-shooting, and quality control of both methods. This period can precede other parts of the evaluation process or coincide with the manufacturer's training period. Run routine laboratory quality control procedures on both methods.

After the familiarization period, the method-comparison experiment can begin. The working group recommends that at least 40 patient samples be analyzed over at least 5 operating days. The reliability and effectiveness of the experiment increase by analyzing more samples over more time, while following the manufacturer's recommendations for calibration.

Analyze each patient sample in duplicate using both the test method and the comparative method. Analyze the duplicates for each method within the same run for that method. Whenever possible, at least 50% of the samples run should be outside the laboratory's reference interval.

When the experiment is completed, record the data in a logical manner (such as that which is suggested in the Appendix). Plot the data and assess the diagram visually and statistically for relative linearity,