This document provides guidance for establishing shelf-life and in-use stability claims for in vitro diagnostic reagents such as reagent kits, calibrators, and control products.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Evaluation of Stability of In Vitro Diagnostic Reagents; Approved Guideline

Volume 29 Number 20

James F. Pierson-Perry
Sousan S. Altaie, PhD
Susan J. Danielson, PhD
Birgitte Lund Jorgensen, PhD
Bettina Poetsch, PhD
Rosanne M. Savol, RAC
Jeffrey E. Vaks, PhD
Jeffrey Budd, PhD
Karl De Vore
Robert Magari, PhD

Abstract

Clinical and Laboratory Standards Institute document EP25-A—Evaluation of Stability of In Vitro Diagnostic Reagents; Approved Guideline provides guidance and regression-based procedures for establishing stability-related claims of in vitro diagnostic (IVD) reagents such as reagent kits, calibrators, control products, and sample diluents. This guideline was written primarily for manufacturers and regulatory agencies, but will also be of interest to clinical laboratories. It provides information on the design, implementation, data analysis, and documentation needs for studies to establish and verify shelf life and in-use life of IVD reagents. Additional topics address assessment of product transport conditions on stability and accelerated stability testing.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Committee Membership

Area Committee on Evaluation Protocols

Chairholder
Greg Cooper, CLS, MHA
Bio-Rad Laboratories, Inc., QSD Division
Plano, Texas, USA

Vice-Chairholder
R. Neill Carey, PhD
Peninsula Regional Medical Center
Salisbury, Maryland, USA

Advisors
David A. Armbruster, PhD, DABCC, FACB
Abbott Diagnostics
Abbott Park, Illinois, USA

Carl C. Garber, PhD, FACB
Quest Diagnostics, Incorporated
Lyndhurst, New Jersey, USA

Patricia E. Garrett, PhD
SeraCare Life Sciences, Inc.
Portland, Maine, USA

Claude Giroud, PhD
Bio-Rad Laboratories, Inc.
Marnes-La-Coquette, France

Martin H. Kroll, MD
Boston Medical Center
Boston, Massachusetts, USA

Jan S. Krouwer, PhD
Krouwer Consulting
Sherborn, Massachusetts, USA

Jacob (Jack) B. Levine, MBA
Siemens Healthcare Diagnostics
Tarrytown, New York, USA

Kristian Linnet, MD, PhD
University of Copenhagen
Copenhagen, Denmark

Robert J. McEnroe, PhD
Roche Diagnostics Operations, Inc.
Indianapolis, Indiana, USA

Subcommittee on Evaluation of Stability of In Vitro Diagnostic Reagents

Chairholder
James F. Pierson-Perry
Siemens Healthcare Diagnostics
Newark, Delaware, USA

Advisors
Birgitte Lund Jorgensen, PhD
Radiometer Medical ApS
Bronshoj, Denmark

Bettina Poetsch, PhD
Roche Diagnostics GmbH
Penzberg, Germany

Rosanne M. Savol, RAC
Rosebud Consulting
Granger, Indiana, USA

Jeffrey E. Vaks, PhD
Roche Molecular Diagnostics
Pleasanton, California, USA

Kevin M. Bartko
Abbott
Abbott Park, Illinois, USA

Jeffrey Budd, PhD
Beckman Coulter, Inc.
Chaska, Minnesota, USA
Advisors (Continued)

Karl De Vore
Bio-Rad Laboratories, Inc.
Irvine, California, USA

Chandra P. Jain
Beckman Coulter, Inc.
Brea, California, USA

Antje Janssen
Therapeutic Goods Administration
Woden, Australia

Robert Magari, PhD
Beckman Coulter, Inc.
Miami, Florida, USA

Wadid Sadek, PhD
Stuarts Draft, Virginia, USA

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania, USA

Lois M. Schmidt, DA
Vice President, Standards Development and Marketing

Jane M. Oates, MT(ASCP)
Staff Liaison

Melissa A. Lewis
Editor

Carol DiBerardino, MLA, ELS
Assistant Editor
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Standard Precautions .. 1

3 Terminology .. 1
 3.1 A Note on Terminology .. 1
 3.2 Definitions ... 2
 3.3 Abbreviations and Acronyms ... 4

4 Overview of the Stability Testing Process .. 4
 4.1 Operational Definition of Stability ... 5
 4.2 Types of Stability Studies ... 8
 4.3 Stability Study Design Options ... 9
 4.4 The Stability Testing Plan ... 9
 4.5 Extension to Qualitative Methods ... 11
 4.6 Documentation of Stability Studies .. 11

5 Real-time Stability Study Protocol .. 11
 5.1 Planning .. 11
 5.2 Experimental ... 12
 5.3 Data Analysis .. 13

6 Real-time Stability Monitoring (Verification) ... 15

7 Accelerated Stability Testing ... 15
 7.1 Applications of Accelerated Stability Testing .. 15
 7.2 Considerations for Planning Temperature-Based Accelerated Stability Studies 16
 7.3 Analysis of Accelerated Stability Testing Data for Shelf-Life Claims 17

References ... 20

Appendix A. Measurand Drift Analysis Example .. 22

Appendix B. Example of Use of Arrhenius Equation With Accelerated Stability Testing Data to
Predict Shelf Life of an *In Vitro* Diagnostic Control Product ... 24

Appendix C. Determining the Number of Time Points and Repeats for Stability Studies Based on
Linear Regression Analysis .. 26

Summary of Comments and Subcommittee Responses .. 29

Laboratory Failure Sources and CLSI Evaluation Protocols Documents ... 36

The Quality Management System Approach ... 38

Related CLSI Reference Materials ... 39
Foreword

Stability of an in vitro diagnostic (IVD) reagent reflects its ability to maintain consistent performance characteristics over time. Unlike precision, bias, and other common performance attributes, product stability is rarely assessed directly by customer testing. As such, there is increased burden on manufacturers to ensure that stability claims are developed from experimental designs and data analyses that are appropriate for each product’s particular requirements and applications.

IVD reagents, in the context of this guideline, represent end-use consumable products sold for the purpose of performing clinical measurements on patient specimens or other samples. Examples of such products are IVD reagent kits and their associated calibrators, controls, sample diluents, and system generic reagents.

Content of this guideline is aligned with European Standard EN 13640:2002—Stability Testing of In Vitro Diagnostics Reagents, referenced herein as EN 13640. Two other important internationally recognized guidance documents relative to stability study design and analyses are International Conference on Harmonization (ICH) Q1A (R2) and ICH Q1E. Although these were developed for drugs and drug substances, much of their content is directly relevant to IVD reagents.

Key Words

Accelerated stability, allowable drift, calibration interval, expiration dating, in-use life, shelf life, stability monitoring, stability plan, transport simulation
Evaluation of Stability of In Vitro Diagnostic Reagents; Approved Guideline

1 Scope

This guidance document provides information on the establishment and verification of shelf-life and in-use stability claims for quantitative and qualitative in vitro diagnostic (IVD) reagents. It includes background information and typical content to consider when creating a stability testing plan for a particular product, logistics of performing the studies, recommended data analyses, and documentation of stability claims. Additional topics include assessment of product transport conditions on stability claims, stability monitoring (verification), and uses of accelerated stability testing.

The intended users of this guideline are primarily manufacturers of IVD reagents and regulatory agencies. Clinical laboratorians may find this information useful in interpreting commercial product stability claims, as well as for establishing stability attributes of “laboratory-developed test” methods.

This guideline does not address instrument systems, laboratory equipment, software, or patient samples. Stability testing of raw materials or components of reagent kits or consumables is not addressed explicitly. The principles described in this document could, however, be adapted by manufacturers toward that purpose.

2 Standard Precautions

Because it is often impossible to know what isolates or specimens might be infectious, all patient and laboratory specimens are treated as infectious and handled according to “standard precautions.” Standard precautions are guidelines that combine the major features of “universal precautions and body substance isolation” practices. Standard precautions cover the transmission of all infectious agents and thus are more comprehensive than universal precautions, which are intended to apply only to transmission of blood-borne pathogens. Standard and universal precaution guidelines are available from the US Centers for Disease Control and Prevention.5 For specific precautions for preventing the laboratory transmission of all infectious agents from laboratory instruments and materials and for recommendations for the management of exposure to all infectious disease, refer to CLSI document M29.6

3 Terminology

3.1 A Note on Terminology

CLSI, as a global leader in standardization, is firmly committed to achieving global harmonization wherever possible. Harmonization is a process of recognizing, understanding, and explaining differences while taking steps to achieve worldwide uniformity. CLSI recognizes that medical conventions in the global metrological community have evolved differently in the United States, Europe, and elsewhere; that these differences are reflected in CLSI, International Organization of Standardization (ISO), and European Committee for Standardization (CEN) documents; and that legally required use of terms, regional usage, and different consensus timelines are all important considerations in the harmonization process. In light of this, CLSI’s consensus process for development and revision of standards focuses on harmonization of terms to facilitate the global application of standards.