Quantitative D-dimer for the Exclusion of Venous Thromboembolic Disease; Approved Guideline

This document provides guidelines regarding the use of D-dimer in exclusion of venous thromboembolism (VTE) including a description of the value of clinical determination of the pretest probability of VTE; the proper collection and handling of the specimen; assays used for D-dimer analysis; determination of the threshold for exclusion of VTE; interpretation of test results; and aspects of regulatory and accreditation requirements.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Advancing Quality in Health Care Testing

Clinical and Laboratory Standards Institute (CLSI) is an international, interdisciplinary, nonprofit, standards developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the health care community. We are recognized worldwide for the application of our unique consensus process in the development of standards and guidelines for patient testing and related health care issues. Our process is based on the principle that consensus is an effective way to improve patient testing and health care services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, we provide an open and unbiased forum to address critical issues affecting the quality of patient testing and health care.

PUBLICATIONS

A document is published as a standard, guideline, or report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS

CLSI’s voluntary consensus process establishes formal criteria for the following:

- Authorization of a project
- Development and open review of documents
- Revision of documents in response to users’ comments
- Acceptance of a document as a consensus standard or guideline

Invitation for Participation in the Consensus Process

Core to the development of all CLSI documents is the consensus process. Within the context and operation of CLSI, voluntary consensus is substantial agreement by materially affected, competent, and interested parties that may be obtained by following the consensus procedures defined in CLSI’s Administrative Procedures. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and are willing to accept the resulting agreement. CLSI documents are expected to undergo evaluation and modification in order to keep pace with advancements in technologies, procedures, methods, and protocols affecting laboratory or health care.

Comments on Candidate Drafts for Advancement

CLSI’s voluntary consensus process depends on experts who serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of a 45-day comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate. All comments along with the committee’s responses are retained on file at CLSI and are available upon request.

Comments on Published Documents

The comments of users of published CLSI documents are essential to the consensus process. Anyone may submit a comment. All comments are addressed according to the consensus process by a committee of experts. A summary of comments and committee responses is retained on file at CLSI and is available upon request. Readers are strongly encouraged to comment at any time on any document.

APPEALS PROCESS

CLSI consensus procedures include an appeals process that is described in detail in Section 8 of the Administrative Procedures.

VOLUNTEER PARTICIPATION

Health care professionals in all specialties are urged to volunteer for participation in CLSI projects.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
940 West Valley Road, Suite 1400
Wayne, PA 19087 USA
610.688.0100
610.688.0700
www.clsi.org
standard@clsi.org
Abstract

D-dimer is a product of fibrinolysis that is assayed in the blood. It is elevated following intravascular thrombosis, disseminated intravascular coagulation, and other conditions that can cause fibrin generation. Assay of D-dimer is a useful tool when evaluating patients with possible venous thromboembolism (VTE), as the absence of D-dimer is helpful in excluding VTE. Clinical and Laboratory Standards Institute document H59-A—Quantitative D-dimer for the Exclusion of Venous Thromboembolic Disease; Approved Guideline provides guidance regarding the use of D-dimer in exclusion of VTE including a description of the value of clinical determination of the pretest probability of VTE; the proper collection and handling of the specimen; assays used for D-dimer analysis; determination of the threshold for exclusion of VTE; interpretation of test results; and aspects of regulatory and accreditation requirements. The guideline is provided for use by laboratorians, manufacturers of D-dimer assays, clinicians who use the D-dimer for VTE exclusion, and accrediting and regulatory agencies.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org
Copyright ©2011 Clinical and Laboratory Standards Institute. Except as stated below, neither this publication nor any portion thereof may be adapted, copied, or otherwise reproduced, by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from Clinical and Laboratory Standards Institute (“CLSI”).

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, contact the Executive Vice President, Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087, USA.

Suggested Citation

Proposed Guideline
April 2010

Approved Guideline
March 2011

ISSN 0273-3099
Committee Membership

Consensus Committee on Hematology

Dorothy M. Adcock, MD Josephine M. Bautista, MS, Ian Giles, MD
Chairholder MT(ASCP) FDA Center for Devices and Sysmex America, Inc.
Esoterix Coagulation Radiological Health Mundelein, Illinois, USA
Englewood, Colorado, USA Rockville, Maryland, USA
Stephen Kitchen, FIBMS, PhD Douglas J. Christie, PhD, FAHA Hans Hoffmann, PhD
Vice-Chairholder Siemens Healthcare Diagnostics Abbott GmbH
Royal Hallamshire Hospital Newark, Delaware Wiesbaden, Germany
Sheffield, United Kingdom Emmanuel Favaloro, PhD Powers Peterson, MD
Maria J. Arroz, MD ICPMR, Westmead Hospital Weill Cornell Medical College
Hospital S. Francisco Xavier New South Wales, Australia in Qatar
Lisbon, Portugal

Document Development Committee on Quantitative D-dimer

John D. Olson, MD, PhD Kathleen Trumbull, MS, Lois M. Schmidt, DA
Chairholder MT(ASCP) Instrumentation Laboratory Vice President, Standards
University of Texas Health Center Bedford, Massachusetts, USA Development
San Antonio, Texas, USA
Dorothy M. Adcock, MD Elizabeth M. Van Cott, MD Jennifer K. Adams, MT(ASCP),
Esoterix Coagulation Massachusetts General Hospital MSHA Staff Liaison
A LabCorp Company Boston, Massachusetts, USA
Englewood, Colorado, USA Thomas Wissel, PhD David E. Sterry, MT(ASCP)
Valerie R. Ginyard, BSMT(ASCP) Siemens Healthcare Diagnostics Project Manager
FDA Center for Devices and Marburg, Germany
Radiological Health
Rockville, Maryland, USA Staff
Marc Girmaux, PhD Clinical and Laboratory Standards
Diagnostica Stago Institute
Gennevilliers, France Wayne, Pennsylvania, USA

Acknowledgment

CLSI and the Consensus Committee on Hematology gratefully acknowledge the following individuals for their contributions during the development of this approved-level document:

Theresa Ambrose Bush, PhD, RAC, DABCC Thomas J. Prihoda, PhD
Roche Diagnostics University of Texas Health Science Center
Indianapolis, Indiana, USA San Antonio, Texas, USA

Philippe de Moerloose, MD Alicia Rico-Lazarowski, H(ASCP)CM
University Hospital of Geneva bioMérieux
Geneva, Switzerland Durham, North Carolina, USA

Chris Gardiner, FIBMS, MSc, PhD Miguel Sales
University College London Hospitals Biokit SA
London, United Kingdom Barcelona, Spain

C. Alex McMahan, PhD Linda Stang, MLT
University of Texas Health Science Center University of Alberta Hospital
San Antonio, Texas, USA Edmonton, Alberta, Canada
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Introduction .. 1

3 Standard Precautions .. 2

4 Terminology ... 2

4.1 A Note on Terminology .. 2

4.2 Definitions 2

4.3 Abbreviations and Acronyms ... 7

5 Overview of D-dimer Testing .. 7

5.1 Venous Thromboembolism Background .. 7

5.2 D-dimer Measurement .. 8

5.3 Problems With D-dimer Measurement ... 9

5.4 Harmonization vs Standardization .. 9

6 Patient Evaluation and Pretest Probability ... 10

6.1 Limitations Related to Patient Conditions or Therapies ... 12

7 Specimen Collection and Processing ... 13

7.1 Patient Variables/Preparation Before Collection .. 13

7.2 Specimen Collection ... 14

7.3 Specimen Processing, Transport, and Storage .. 14

7.4 Interferences .. 15

8 Assay Methodologies ... 15

8.1 Quantitative Sandwich Assays .. 15

8.2 Quantitative Microparticle Agglutination ... 16

8.3 Semiquantitative Microparticle Agglutination Methods ... 16

8.4 Point-of-Care Testing ... 16

8.5 Other Technologies ... 17

9 Assay Characteristics, Reference Interval, and Threshold for Exclusion of Venous
Thromboembolism ... 17

9.1 Recommended Assay Characteristics ... 17

9.2 Reference Interval .. 18

9.3 Establishing the Threshold for Venous Thromboembolism Exclusion:
Comparison to Clinical and Imaging Studies .. 18

9.4 Methods That a Laboratory May Use to Determine the Threshold for
Exclusion of Venous Thromboembolism .. 19

9.5 Satisfying Regulatory Requirements ... 20

10 Interpretation of Results ... 20

10.1 Result Reporting ... 21
Contents (Continued)

References...23

Appendix. US Food and Drug Administration Clinical Study Design: An Example.........................28

The Quality Management System Approach ..30

Related CLSI Reference Materials ..31
Foreword

Since the 1960s, clinicians have measured the products of plasmin action on fibrin, in the form of fibrin(ogen) degradation products (FDPs), as an indicator of intravascular fibrinolysis. Initial use of the FDP assay was to assist in the evaluation and monitoring of patients with disseminated intravascular coagulation (DIC). In the mid-1980s, the first monoclonal antibody-based assays for D-dimer, a specific FDP, were described, providing an assay with greater specificity for fibrin.1 Fibrin is the basic structural molecule constituting the thrombus, and D-dimer is the smallest crosslinked degradation product of crosslinked fibrin. Because the D-dimer test is very sensitive, with the concentration being elevated whenever fibrin, formed in the vasculature, is being degraded, the test has generally replaced the assay for FDP in the clinical setting.

Many clinical conditions are associated with increased blood concentrations of D-dimer. Some of these include venous thromboembolism (VTE), arterial thrombosis (including myocardial infarction and stroke), DIC, association with recurrent thrombotic risk following anticoagulation, the postoperative state, significant liver disease, malignancy, and normal pregnancy.2 However, the current clinical use of the D-dimer assay is primarily for the diagnosis and monitoring of DIC and for the exclusion of VTE, in particular, deep vein/venous thrombosis, and pulmonary embolism/embolus, which are the focuses of this document.

Patients who present with signs and symptoms that may be caused by VTE require evaluation to exclude or confirm the diagnosis of a thrombus. Objective confirmation is needed because venous thrombosis is not reliably diagnosed on clinical grounds alone; omission of therapy if a thrombus is missed could be life-threatening, and the administration of anticoagulant therapy also carries risk. The most reliable of such tests are imaging studies that are time-consuming and expensive to perform. Knowing that the presence of an acute intravascular thrombus is associated with fibrinolysis and elevation of D-dimer in the blood has led to the concept that below a certain threshold D-dimer may be an effective way to exclude VTE and proceed without performing the imaging studies. If effective, such an approach may, of course, provide savings in time and resources. However, there are many possible causes of elevations of the D-dimer and using the test for VTE exclusion in these settings may actually lead to imaging studies of limited value. The approach also carries the inherent risk of incorrectly excluding VTE, placing the patient at risk of thrombus growth or embolus without appropriate anticoagulation, which is a potentially life-threatening situation. Thus, the power of the D-dimer test for exclusion of VTE must be very high to provide the best protection for the patient and it is best applied only in settings where known alternative causes of elevations are not present.3

The development of commercial assays for D-dimer has grown rapidly, approaching 24 at the time of this writing. Considerable variability has been reported among these commercial offerings. One major source of variability is in the units reported. Quantitative D-dimer results are provided in mass units. As these assays have evolved, two different types of units of significantly different molecular weight have been used to represent D-dimer, the fibrinogen equivalent unit at 340 kDa and the D-dimer unit at 195 kDa. Adding to the complexity of reporting these values is variability in the magnitude of the units reported, eg, nanograms per milliliter, micrograms per milliliter, and micrograms per liter. This variability in both the type and magnitude of units contributes to the general inconsistency among assays performed with different methods in different laboratories, as do the differences in the specificities of the antibodies used. This inconsistency has led to confusion in some laboratories, especially when the threshold for the exclusion of VTE must be set. This issue of the type of units is not well recognized by laboratorians or clinicians and is often ignored in some publications by recognized experts in the field.

In addition to the technical issues in the analytical (examination) aspects of the test, when applied to the exclusion of VTE, the clinical evaluation of the pretest probability of VTE, specimen collection and handling, and the reporting and interpretation of results are also critical elements of the use of the test in this clinical setting.
CLSI document H59-A reviews the clinical application of the D-dimer assay for the exclusion of VTE for nonhospitalized, ambulatory patients. Use of D-dimer for the exclusion of VTE on hospitalized patients is less effective, as most of these patients have an elevated D-dimer concentration because of immobilization, surgery, or other conditions. The purpose of this document is to focus on the preanalytical, analytical, and postanalytical (preexamination, examination, and postexamination) elements of the use of the D-dimer test as it is applied to the exclusion of VTE. It addresses the evaluation of the patient in the determination of the probability of VTE; specimen collection, transport, and processing; analytical (examination) methods (measurement procedures/analytical method); reference intervals; establishment and reporting of the threshold for exclusion of VTE; and interpretation of results. It is intended to provide valuable guidance to laboratorians, clinicians, manufacturers, and regulators as the use of the D-dimer assay for the exclusion of VTE continues to evolve.

Key Words

D-dimer, deep vein/venous thrombosis (DVT), negative predictive value (NPV), pretest probability (PTP), pulmonary embolism/embolus (PE), quantitative D-dimer, threshold, thrombosis, venous thromboembolism (VTE)
Quantitative D-dimer for the Exclusion of Venous Thromboembolic Disease; Approved Guideline

1 Scope

This document provides guidelines regarding preanalytical, analytical, and postanalytical (preexamination, examination, and postexamination) elements of testing including, but not limited to:

- A description of the value of clinical determination of the pretest probability (PTP) of venous thromboembolism (VTE)
- The proper collection and handling of the specimen
- Assays used for D-dimer analysis
- Establishment of the threshold for exclusion of VTE and its interpretation related to the reference interval (RI)
- Interpretation of test results
- Aspects of regulatory and accreditation requirements

The guideline is intended for clinical laboratorians and laboratory directors, for manufacturers of the methods used to perform the test, for clinicians with an interest in the laboratory elements of the tests, and for regulatory and accrediting agencies overseeing the use of D-dimer for this purpose.

This guideline is not intended for use by patients with clinical conditions that require D-dimer evaluation. Patients reading this document are encouraged to discuss its content with their health care providers. Issues of intermethod standardization or the development of calibrators for standardization are discussed; however, guidelines regarding standardization and calibration are beyond the scope of this document. The document does not address other clinical settings in which the measurement of D-dimer may be clinically useful, including diagnosis and monitoring of overt and nonovert disseminated intravascular coagulation (DIC); risk of recurrence of VTE following the completion of anticoagulant therapy; detection of occult malignancy; staging or risk stratification of diagnosed malignancy; risk of future myocardial infarction in patients presenting with chest pain; and evaluation for subarachnoid hemorrhage. Studies have demonstrated some value in the combined use of the D-dimer and ultrasonography in the exclusion of VTE. However, the focus of this document is the value of D-dimer to potentially avoid the need for imaging studies. The combined use of D-dimer with imaging studies in the evaluation of VTE is not addressed.

2 Introduction

Because of the potential to efficiently evaluate patients with VTE, many assays have been developed to measure D-dimer in the blood. The assays vary in their sensitivity to D-dimer, the type and magnitude of units used to report results, the type of specimen used, and other characteristics. Experience has uncovered a number of limitations of the test as it applies to the exclusion of VTE.

The purpose of this document, based on currently available evidence, is to provide guidelines regarding the use of the D-dimer assay for the exclusion of VTE. Elements of the clinical evaluation of the patient, specimen collection and processing, analytical (examination) methods, developments of thresholds for the exclusion of VTE, and the interpretation of results are addressed. It is important to remember that the data regarding the use of clinical PTP and the D-dimer test for exclusion were developed in the clinical setting of deep vein/venous thrombosis (DVT) and pulmonary embolism/embolus (PE). Application of these guidelines in evaluation of other thrombotic events is not recommended and may be misleading. Patients with distal DVT will have a normal D-dimer 35% of the time and the test cannot be used to avoid