Quality Control for Commercially Prepared Microbiological Culture Media; Approved Standard—Third Edition

This document contains quality assurance procedures for manufacturers and users of prepared, ready-to-use microbiological culture media.

A standard for national application developed through the NCCLS consensus process.
NCCLS...
Serving the World’s Medical Science Community Through Voluntary Consensus

NCCLS is an international, interdisciplinary, nonprofit, standards-developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the healthcare community. It is recognized worldwide for the application of its unique consensus process in the development of standards and guidelines for patient testing and related healthcare issues. NCCLS is based on the principle that consensus is an effective and cost-effective way to improve patient testing and healthcare services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, NCCLS provides an open and unbiased forum to address critical issues affecting the quality of patient testing and healthcare care.

PUBLICATIONS
An NCCLS document is published as a standard, guideline, or committee report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS
The NCCLS voluntary consensus process is a protocol establishing formal criteria for:

- the authorization of a project
- the development and open review of documents
- the revision of documents in response to comments by users
- the acceptance of a document as a consensus standard or guideline.

Most NCCLS documents are subject to two levels of consensus—“proposed” and “approved.” Depending on the need for field evaluation or data collection, documents may also be made available for review at an intermediate (i.e., “tentative”) consensus level.

Proposed An NCCLS consensus document undergoes the first stage of review by the healthcare community as a proposed standard or guideline. The document should receive a wide and thorough technical review, including an overall review of its scope, approach, and utility, and a line-by-line review of its technical and editorial content.

Tentative A tentative standard or guideline is made available for review and comment only when a recommended method has a well-defined need for a field evaluation or when a recommended protocol requires that specific data be collected. It should be reviewed to ensure its utility.

Approved An approved standard or guideline has achieved consensus within the healthcare community. It should be reviewed to assess the utility of the final document, to ensure attainment of consensus (i.e., that comments on earlier versions have been satisfactorily addressed), and to identify the need for additional consensus documents.

NCCLS standards and guidelines represent a consensus opinion on good practices and reflect the substantial agreement by materially affected, competent, and interested parties obtained by following NCCLS’s established consensus procedures. Provisions in NCCLS standards and guidelines may be more or less stringent than applicable regulations. Consequently, conformance to this voluntary consensus document does not relieve the user of responsibility for compliance with applicable regulations.

COMMENTS
The comments of users are essential to the consensus process. Anyone may submit a comment, and all comments are addressed, according to the consensus process, by the NCCLS committee that wrote the document. All comments, including those that result in a change to the document when published at the next consensus level and those that do not result in a change, are responded to by the committee in an appendix to the document. Readers are strongly encouraged to comment in any form and at any time on any NCCLS document. Address comments to the NCCLS Executive Offices, 940 West Valley Road, Suite 1400, Wayne, PA 19087, USA.

VOLUNTEER PARTICIPATION
Healthcare professionals in all specialties are urged to volunteer for participation in NCCLS projects. Please contact the NCCLS Executive Offices for additional information on committee participation.
Abstract

The M22 standard provides information on quality control of commercially prepared microbiological culture media to users and manufacturers. M22-A3 is a revision of the approved standard, M22-A2, published in December 1996. The standard applies to all commercial media listed in Table 2 regardless of packaging, plate, or tube design. The media included in M22-A3 are from three surveys conducted by the College of American Pathologists. The third survey, conducted in the fall of 2001, was performed in response to the many requests for further expansion of the exempt media list. M22-A3 lists an additional 27 exempt media.

Committee Membership

Area Committee on Microbiology

Mary Jane Ferraro, Ph.D., M.P.H.
Chairholder
Massachusetts General Hospital
Boston, Massachusetts

James H. Jorgensen, Ph.D.
Vice-Chairholder
University of Texas Health
Science Center
San Antonio, Texas

Donald R. Callihan, Ph.D.
Veterans Affairs Medical Center
Portland, Oregon

Thomas R. Shryock, Ph.D.
Elanco Animal Health
Greenfield, Indiana

Jana M. Swenson, M.M.Sc.
Centers for Disease Control and Prevention
Atlanta, Georgia

Michael L. Wilson, M.D.
Denver Health Medical Center
Denver, Colorado

Advisors

Ellen Jo Baron, Ph.D.
Stanford University Hospital & Medical School
Stanford, California

Lynne S. Garcia, M.S.
LSG and Associates
Santa Monica, California

Richard L. Hodinka, Ph.D.
Children’s Hospital of Philadelphia
Philadelphia, Pennsylvania

Working Group on Quality Control of Culture Media

Karen Krisher, Ph.D., D(ABMM)
Chairholder
Donald R. Callihan, Ph.D.
BD Diagnostic Systems
Sparks, Maryland

Ronald N. Jones, M.D.
The Jones Group/JMI Laboratories
North Liberty, Iowa

Dyan C. Luper, B.S., M.T., S.M.(ASCP), S.M.(NRM)
CHRISTUS Spohn Health System
Corpus Christi, Texas

Michael A. Pfaller, M.D.
University of Iowa College of Medicine
Iowa City, Iowa

Robert P. Rennie, Ph.D.
University of Alberta Hospitals
Edmonton, Canada

Melvin P. Weinstein, M.D.
Robert Wood Johnson Medical School
New Brunswick, New Jersey

Gail L. Woods, M.D.
ARUP Research Institute
Salt Lake City, Utah

J. Michael Miller, Ph.D., D(ABMM)
Centers for Disease Control and Prevention
Atlanta, Georgia

Susan E. Sharp, Ph.D., D(ABMM)
Kaiser-Permanente - NW
Portland, Oregon

Roxanne G. Shively, M.S.
FDA Center for Devices/Rad. Health
Rockville, Maryland

Staff

Tracy A. Dooley, M.L.T.(ASCP)
Staff Liaison
NCCLS
Wayne, Pennsylvania

Donna M. Wilhelm
Editor
NCCLS
Wayne, Pennsylvania

Melissa A. Lewis
Assistant Editor
NCCLS
Wayne, Pennsylvania
Contents

Abstract...i
Committee Membership... iii
Foreword.. vii

1 Scope... 1

2 Introduction... 1

3 Standard Precautions... 2

4 General Responsibilities of the Manufacturer, Distributor, and User......................... 2
 4.1 The Manufacturer ... 2
 4.2 The Distributor .. 3
 4.3 The User.. 4

5 Categories of Microbiological Media... 4
 5.1 Exempt Media Category ... 5
 5.2 Nonexempt Media Category .. 5
 5.3 General Quality Control Requirements for Both Exempt and Nonexempt Media ... 5
 5.4 User Quality Control Requirements for Nonexempt Media Only 6
 5.5 Quality Control Organisms.. 6

6 Inoculation of Quality Control Media.. 8
 6.1 Direct Inoculation ... 8
 6.2 Standardized Suspension .. 8
 6.3 Preparation of Suspension.. 8

7 Incubation Conditions... 10

8 Interpretation of Results... 10

Table 1. Extrapolated Failure Rates (EFR) of Media Included in the Three College of American

Table 1A. Reasons Given for Lot Failures ... 12

Table 1B. Exempt and Nonexempt Categories for Media Included in CAP Surveys

Table 2. Manufacturers’ Minimum Quality Control Requirements for Commercially Prepared
Media... 15

Table 3. Minimum User Quality Control Recommendations for Certain Categories of
Commercially Prepared Media.. 19

Table 4. Performance Check of Nonexempt Media.. 20

Table 5. Processing of Exempt Media.. 21

References... 22
Contents (Continued)

Summary of Comments and Subcommittee Responses on M22-A2 ..23

Summary of Delegate Comments and Subcommittee Responses on M22-P2..25

The Quality System Approach..28

Related NCCLS Publications..29
Foreword

Quality control of commercially prepared media imposes a substantial financial burden on licensed microbiology laboratories. In response, the College of American Pathologists (CAP) conducted three laboratory surveys to determine the failure rates of commonly used media.1,2 The first two surveys provided data that allowed exemption of 24 of 35 assessed media from quality control. The third survey, conducted in 2001, allows the addition of 27 media to the exempt list. The data, however, cause concern. Manufacturers perform quality control on all media sold to customers. Why, then, do certain media repeatedly exhibit failure rates \(\geq 0.3\) or 0.5%? Less than optimum storage conditions may contribute to medium failure. Media are shipped, stored, and delivered nonrefrigerated by the manufacturer or distributor. Specialty media that require more fastidious quality control organisms also often exhibit higher failure rates. Separate, limited surveys of different U.S. and Canadian3,4 clinical microbiology laboratories revealed a lack of standardization in the quality control of media, including processing, storage, and inoculation of quality control organisms. Until resolution of these issues, clinical laboratories must continue to verify the performance of certain medium types.

Karen Krisher, Ph.D., D(ABMM), Chairholder,
\textit{Working Group on Quality Assurance for Commercially Prepared Microbiological Culture Media}

Key Words

Commercially prepared, ready-to-use culture media; culture media; quality assurance; quality control
Quality Control for Commercially Prepared Microbiological Culture Media; Approved Standard—Third Edition

1 Scope

The M22 standard provides information on quality control of commercially prepared microbiological culture media to users and manufacturers. M22-A3 is a revision of the approved standard, M22-A2, published in December 1996.

The basic premise of this standard is that the retesting of commercially prepared microbiological culture media is unnecessary for those media that are of proven reliability. The categorization of media that do not require retesting by the user is based on quality control data collected from surveys of clinical laboratories enrolled in the bacteriology proficiency-testing program conducted by the College of American Pathologists (CAP). The media types listed in the M22 standard are well established for recovery of clinically significant microorganisms. Exemption of certain media from routine quality control by the clinical laboratories assumes that media performance is monitored by an overall quality program that correlates test methods with clinical information, and monitors test procedures and specimen quality. Media used for antimicrobial susceptibility testing have different quality control recommendations that are detailed in separate NCCLS documents.

Changes or additions to this newest revision are the following: 1) Designation of the responsibilities of the manufacturer, distributor, and user; 2) clarification of the media included in various categories; 3) simplification of the basic protocols for the maintenance of quality control organisms; 4) incubation conditions for media quality control; 5) recommendations for the quality control of media used for certain fastidious organisms; and 6) expansion of the cutoff for acceptable failure rate from 0.3% to 0.5% and the categorization of an additional 27 media as exempt from user testing.

2 Introduction

The NCCLS Subcommittee on Media Quality Control was formed in 1984 to develop a standard that would specify the requirements for quality control of culture media. The work of this subcommittee resulted in the publication of M22 as a proposed standard in 1985 and an approved standard in 1990. A revision of M22 was published in 1996. In 2001, the document was scheduled for a second revision and the responsibility was assigned to a working group within the original subcommittee. From the inception of M22, the subcommittee has utilized the recommendations of the College of American Pathologists for the categorization of media that require quality control by the user.

CAP evaluated the failure rates of commercially prepared media in three surveys mailed to participants of the CAP Microbiology Proficiency Testing Surveys (see Table 1).1,2 Failure rates are calculated as a raw percentage score of “total number of lots failing QC/total number of lots tested.” An extrapolated failure rate is then determined by calculating what proportion of the raw rate is attributed to some type of failure detected by a QC organism. Only those media with a significant QC experience as defined by >1000 lots or >100 000 items which exhibit QC strain-related failures meet the criteria for calculation of the extrapolated failure rate.

The most recent survey (2001) evaluated 262 968 lots, among which were 32 702 833 plates, tubes, or bottles.2 Failure rates were calculated for the 38 most commonly used media (97% of the reported lots). Reasons for media failures for all three surveys are listed in Table 1A. The extrapolated failure rate limit was raised from 0.3% to 0.5% based on analysis of the distribution of failures rates from the three surveys. Users are exempt from performing quality control of media with failure rates ≤0.5% (see Table 1B). Media with failure rates >0.5% continue to require user quality control.