This document addresses the selection and preparation of antifungal agents; implementation and interpretation of test procedures; and quality control requirements for susceptibility testing of yeasts that cause invasive fungal infections.

A standard for global application developed through the NCCLS consensus process.
NCCLS... Serving the World’s Medical Science Community Through Voluntary Consensus

NCCLS is an international, interdisciplinary, nonprofit, standards-developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the healthcare community. It is recognized worldwide for the application of its unique consensus process in the development of standards and guidelines for patient testing and related healthcare issues. NCCLS is based on the principle that consensus is an effective and cost-effective way to improve patient testing and healthcare services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, NCCLS provides an open and unbiased forum to address critical issues affecting the quality of patient testing and health care.

PUBLICATIONS

An NCCLS document is published as a standard, guideline, or committee report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS

The NCCLS voluntary consensus process is a protocol establishing formal criteria for:

- the authorization of a project
- the development and open review of documents
- the revision of documents in response to comments by users
- the acceptance of a document as a consensus standard or guideline.

Most NCCLS documents are subject to two levels of consensus—“proposed” and “approved.” Depending on the need for field evaluation or data collection, documents may also be made available for review at an intermediate (i.e., “tentative”) consensus level.

Proposed An NCCLS consensus document undergoes the first stage of review by the healthcare community as a proposed standard or guideline. The document should receive a wide and thorough technical review, including an overall review of its scope, approach, and utility, and a line-by-line review of its technical and editorial content.

Tentative A tentative standard or guideline is made available for review and comment only when a recommended method has a well-defined need for a field evaluation or when a recommended protocol requires that specific data be collected. It should be reviewed to ensure its utility.

Approved An approved standard or guideline has achieved consensus within the healthcare community. It should be reviewed to assess the utility of the final document, to ensure attainment of consensus (i.e., that comments on earlier versions have been satisfactorily addressed), and to identify the need for additional consensus documents.

NCCLS standards and guidelines represent a consensus opinion on good practices and reflect the substantial agreement by materially affected, competent, and interested parties obtained by following NCCLS’s established consensus procedures. Provisions in NCCLS standards and guidelines may be more or less stringent than applicable regulations. Consequently, conformance to this voluntary consensus document does not relieve the user of responsibility for compliance with applicable regulations.

COMMENTS

The comments of users are essential to the consensus process. Anyone may submit a comment, and all comments are addressed, according to the consensus process, by the NCCLS committee that wrote the document. All comments, including those that result in a change to the document when published at the next consensus level and those that do not result in a change, are responded to by the committee in an appendix to the document. Readers are strongly encouraged to comment in any form and at any time on any NCCLS document. Address comments to the NCCLS Executive Offices, 940 West Valley Road, Suite 1400, Wayne, PA 19087, USA.

VOLUNTEER PARTICIPATION

Healthcare professionals in all specialties are urged to volunteer for participation in NCCLS projects. Please contact the NCCLS Executive Offices for additional information on committee participation.

Abstract

NCCLS document M27-A2—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Second Edition describes a method for testing the susceptibility of antifungal agents to yeast that cause invasive fungal infections, including Candida species (and Candida glabrata), and Cryptococcus neoformans. Selection and preparation of antifungal agents, implementation and interpretation of test procedures, and the purpose and implementation of quality control procedures are discussed. A careful examination of the responsibilities of the manufacturer and the user in quality control is also presented.

THE NCCLS consensus process, which is the mechanism for moving a document through two or more levels of review by the healthcare community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of NCCLS documents. Current editions are listed in the NCCLS Catalog, which is distributed to member organizations, and to nonmembers on request. If your organization is not a member and would like to become one, and to request a copy of the NCCLS Catalog, contact the NCCLS Executive Offices. Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: exoffice@nccls.org; Website: www.nccls.org

Volume 22 Number 15

Michael A. Pföller, M.D., Chairholder
Vishnu Chaturvedi, Ph.D.
Ana Espinel-Ingroff, Ph.D.
Mahmoud A. Ghannoum, M.Sc., Ph.D.
Linda L. Gosey, M.T.(ASCP)
Frank C. Odds, Ph.D., FRC Path.
John H. Rex, M.D.
Michael G. Rinaldi, Ph.D.
Daniel J. Sheehan, Ph.D.
Thomas J. Walsh, M.D.
David W. Warnock, Ph.D., FRC Path.
This publication is protected by copyright. No part of it may be reproduced, stored in a retrieval system, transmitted, or made available in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from NCCLS, except as stated below.

NCCLS hereby grants permission to reproduce limited portions of this publication for use in laboratory procedure manuals at a single site, for interlibrary loan, or for use in educational programs provided that multiple copies of such reproduction shall include the following notice, be distributed without charge, and, in no event, contain more than 20% of the document’s text.

Permission to reproduce or otherwise use the text of this document to an extent that exceeds the exemptions granted here or under the Copyright Law must be obtained from NCCLS by written request. To request such permission, address inquiries to the Executive Director, NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.

Copyright ©2002. The National Committee for Clinical Laboratory Standards.

Suggested Citation

Proposed Standard

December 1992

Tentative Standard

October 1995

Approved Standard

June 1997

Approved Standard—Second Edition

August 2002

ISBN 1-56238-469-4
ISSN 0273-3099
iv
Committee Membership

Area Committee on Microbiology

James H. Jorgensen, Ph.D.
Chairholder
University of Texas Health Center
San Antonio, Texas

Mary Jane Ferraro, Ph.D., M.P.H.
Vice-Chairholder
Massachusetts General Hospital
Boston, Massachusetts

Subcommittee on Antifungal Susceptibility Tests

Michael A. Pfaller, M.D.
Chairholder
University of Iowa College of Medicine
Iowa City, Iowa

Vishnu Chaturvedi, Ph.D.
New York State Department of Health
Albany, New York

Ana Espinel-Ingroff, M.S., Ph.D.
Medical College of Virginia/VCU
Richmond, Virginia

Mahmoud A. Ghannoum, M.Sc., Ph.D.
Center for Medical Mycology, Case Western Reserve University, and University Hospitals of Cleveland
Cleveland, Ohio

Linda L. Gosey, M.T.(ASCP)
Food and Drug Administration
Rockville, Maryland

Frank C. Odds, Ph.D., FRC Path.
University of Aberdeen
Scotland, United Kingdom

John H. Rex, M.D.
University of Texas Health Science Ctr. at Houston
Houston, Texas

Michael G. Rinaldi, Ph.D.
University of Texas Health Science Center
San Antonio, Texas

Daniel J. Sheehan, Ph.D.
Pfizer Inc.
New York, New York

Thomas J. Walsh, M.D.
National Cancer Institute
Bethesda, Maryland

David W. Warnock, Ph.D., FRC Path.
Centers for Disease Control and Prevention
Atlanta, Georgia

Advisor

Arthur L. Barry, Ph.D.
Clinical Microbiology Institute
Wilsonville, Oregon
Active Membership
(as of 1 July 2002)

Sustaining Members
Abbott Laboratories
American Association for Clinical Chemistry
Beckman Coulter, Inc.
BD and Company
bioMérieux, Inc.
CLMA
College of American Pathologists
GlaxoSmithKline
Nippon Becton Dickinson Co., Ltd.
Ortho-Clinical Diagnostics, Inc.
Pfizer Inc
Roche Diagnostics, Inc.

Professional Members
AISAR-Associazione Italiana per lo Studio degli
American Academy of Family Physicians
American Association for Clinical Chemistry
American Association for Respiratory Care
American Chemical Society
American Medical Technologists
American Public Health Association
American Society for Clinical Laboratory Science
American Society of Hematology
American Society for Microbiology
American Type Culture Collection, Inc.
Asociación Española Primera de Socorros (Uruguay)
Asociacion Mexicana de Bioquímica Clinica A.C.
British Society for Antimicrobial Chemotherapy
CADIME-Camara De Instituciones De Diagnostico Medico
Canadian Society for Medical Laboratory Science—Société Canadienne de Science de Laboratoire Médical
Clinical Laboratory Management Association
COLA
College of American Pathologists
College of Medical Laboratory Technologists of Ontario
College of Physicians and Surgeons of Saskatchewan
ESCMID
Fundación Bioquímica Argentina
International Association of Medical Laboratory Technologists
International Council for Standardization in Haematology
International Federation of Clinical Chemistry
Italian Society of Clinical Biochemistry and Clinical Molecular Biology
Japan Society of Clinical Chemistry
Japanese Committee for Clinical Laboratory Standards
Joint Commission on Accreditation of Healthcare Organizations
National Academy of Clinical Biochemistry
National Association of Testing Authorities – Australia
National Society for Histotechnology, Inc.
Ontario Medical Association
Quality Management Program-Laboratory Service
RCPA Quality Assurance Programs
PTY Limited
Sociedade Brasileira de Analises Clinicas
Sociedade Brasileira de Patologia Clinica
Sociedad Espanola de Bioquimica Clinica y Patologia Molecular
Turkish Society of Microbiology

Government Members
Association of Public Health Laboratories
Armed Forces Institute of Pathology
BC Centre for Disease Control
Centers for Disease Control and Prevention
Centers for Medicare & Medicaid Services/CLIA Program
Centers for Medicare & Medicaid Services
Chinese Committee for Clinical Laboratory Standards
Commonwealth of Pennsylvania Bureau of Laboratories
Department of Veterans Affairs
Deutsches Institut für Normung (DIN)
FDA Center for Devices and Radiological Health
FDA Center for Veterinary Medicine
FDA Division of Anti-Infective Drug Products
Iowa State Hygienic Laboratory
Massachusetts Department of Public Health Laboratories
National Center of Infectious and Parasitic Diseases (Bulgaria)
National Health Laboratory Service (South Africa)
National Institute of Standards and Technology
New York State Department of Health
Ohio Department of Health
Ontario Ministry of Health
Pennsylvania Dept. of Health
Saskatchewan Health-Provincial Laboratory
Scientific Institute of Public Health; Belgium Ministry of Social Affairs, Public Health and the Environment
Swedish Institute for Infectious Disease Control
Thailand Department of Medical Sciences

Industry Members
AB Biodisk
Abbott Laboratories
Abbott Laboratories, MediSense Products
Acrometrix Corporation
Ammirati Regulatory Consulting
Anaerobe Systems
Asséssor
AstraZeneca
AstraZeneca R & D – Boston, MA
Aventis
Axis-Shield POC AS
Bayer Corporation – Elkhart, IN
Bayer Corporation – Tarrytown, NY
Bayer Corporation – West Haven, CT
Bayer Medical Ltd.
BD
BD Biosciences – San Jose, CA
BD Consumer Products
BD Diagnostic Systems
BD Italia S.P.A.
BD VACUTAINER Systems
Beckman Coulter, Inc.
Beckman Coulter, Inc. Primary Care Diagnostics
Beckman Coulter K.K. (Japan)
Bio-Development SRL
Bio-Inova Life Sciences International
Bio-Inova Life Sciences North America
BioMedia Laboratories Sdn Bhd
BioMérieux (NC)
bioMérieux, Inc. (MO)
Biometrology Consultants
Bio-Rad Laboratories, Inc.
Bio-Rad Laboratories, Inc. - France
Bio-Rad Laboratories, Inc. - France
Bio-Rad Laboratories, Inc. - France
Biotest AG
Blaine Healthcare Associates, Inc.
Bristol-Myers Squibb Company
Canadian External Quality Assessment Laboratory
Capital Management Consulting, Inc.
Carl Schaper
Checkpoint Development Inc.
Chiron Corporation
ChromaVision Medical Systems, Inc.
Chronolab Ag
Clinical Design Group Inc.
Clinical Laboratory Improvement Consultants
Cognigen
Community Medical Center (NJ)
Control Lab (Brazil)
Copan Diagnostics Inc.
Cosmetic Ingredient Review
Cubist Pharmaceuticals
Dade Behring Inc. - Deerfield, IL
Dade Behring Inc. - Glasgow, DE
Dade Behring Inc. - Marburg, Germany
Dade Behring Inc. - Sacramento, CA
Dade Behring Inc. - San Jose, CA
David G. Rhoads Associates, Inc.
Diagnosics Consultancy
Diagnostic Products Corporation
Eiken Chemical Company, Ltd.
Elan Pharmaceuticals
Electa Lab s.r.l.
Enterprise Analysis Corporation
Essential Therapeutics, Inc.
EXPERTech Associates, Inc.
F. Hoffman-La Roche AG
Fort Dodge Animal Health
General Hospital Vienna (Austria)
Geno-Prob Kline
GlaxoSmithKline
Greiner Bio-One Inc.
Helena Laboratories
Home Diagnostics, Inc.
Immunicon Corporation
Institutional Laboratory Corporation
International Technidyne Corporation
IntraBiotics Pharmaceuticals, Inc.
I-STAT Corporation
Johnson and Johnson Pharmaceutical Research and Development, L.L.C.
Kendall Sherwood-Davis & Geck LAB-Interlink, Inc.
Laboratory Specialists, Inc.
Labtest Diagnostica S.A.
LifeScan, Inc. (A Johnson & Johnson Company)
Lilly Research Laboratories
Macemon Consultants
Medical Device Consultants, Inc.
Merck & Company, Inc.
Minigrip/Zip-Pak
Molecular Diagnostics, Inc.
mvi Sciences (MA)
Nabi
Nichols Institute Diagnostics
(Div. of Quest Diagnostics, Inc.)
NimbleGen Systems, Inc.
Nissui Pharmaceutical Co., Ltd.
Nippon Becton Dickinson Co., Ltd.
Norfolk Associates, Inc.
Novartis Pharmaceuticals Corporation
Ortho-Clinical Diagnostics, Inc. (Raritan, NJ)
Ortho-Clinical Diagnostics, Inc. (Rochester, NY)
Oxoid Inc.
Paratek Pharmaceuticals
Pfizer Inc
Pharmacia Corporation
Philips Medical Systems
Powers Consulting Services
Premier Inc.
Procter & Gamble Pharmaceuticals, Inc.
The Product Development Group
QSE Consulting
Quintiles, Inc.
Radiometer America, Inc.
Radiometer Medical A/S
Roche Diagnostics GmbH
Roche Diagnostics, Inc.
Roche Laboratories (Div. Hoffmann-La Roche Inc.)
Sarstedt, Inc.
SARL Laboratoire Caron (France)
Schering Corporation
Schleicher & Schuell, Inc.
Second Opinion
Showa Yakuhin Kako Company, Ltd.
Streck Laboratories, Inc.
SurroMed, Inc.
Synermed Diagnostic Corp.
Sysmex Corporation (Japan)
Sysmex Corporation - Long Grove, IL
The Clinical Microbiology Institute
The Toledo Hospital (OH)
Theravance Inc.
Transasia Engineers
Trek Diagnostic Systems, Inc.
Versicor, Inc.
Vetoquinol S.A.
Visible Genetics, Inc.
Vysis, Inc.
Wallace Oy
Wyeth-Ayerst
Xyletech Systems, Inc.
YD Consultant
YD Diagnostics (Seoul, Korea)

Trade Associations
AdvaMed
Association of Medical Diagnostic Manufacturers
Japan Association Clinical Reagents Ind. - Tokyo, Japan
Medical Industry Association of Australia

Associate Active Members
20th Medical Group (SC)
31st Medical Group-SGSL (APO, AE)
67th CSH Wuerzburg, GE (NY)
121st General Hospital (CA)
Academisch Ziekenhuis-VUB (Belgium)
Acadiana Medical Laboratories, LTD (LA)
Adena Regional Medical Center (OH)
Advocate Healthcare Lutheran General (IL)
Akershus Central Hospital and AFA (Norway)
Albemarle Hospital (NC)
Allegheny General Hospital (PA)
Allegheny University of the Health Sciences (PA)
Allina Health System (MN)
Alton Ochsner Medical Foundation (LA)
American Medical Laboratories (VA)
Antwerp University Hospital (Belgium)
Arkansas Department of Health
ARUP at University Hospital (UT)
Armed Forces Research Institute of Medical Science (APO, AP)
Associated Regional & University Pathologists (UT)
Aurora Consolidated Laboratories (WI)
Azienda Ospedale Di Lecco (Italy)
Bay Medical Center (MI)
Baystate Medical Center (MA)
Bbagus Duzen Laboratories (Turkey)
Bermuda Hospitals Board
Bo Ali Hospital (Iran)
British Columbia Cancer Agency (Vancouver, BC, Canada)
Brooks Air Force Base (TX)
Broward General Medical Center (FL)
Carilion Consolidated Laboratory (VA)
CB Healthcare Complex (Sydney, NS, Canada)
Central Peninsula General Hospital (AK)
Central Texas Veterans Health Care System
Centre Hospitalier Regional del la Citadelle (Belgium)
Centro Diagnostico Italiano (Milano, Italy)
Champlain Valley Physicians Hospital (NY)
Chang Gung Memorial Hospital (Taiwan)
Chang General Hospital (Singapore)
Children’s Hospital (NE)
Children’s Hospital & Clinics (MN)
Children’s Hospital Medical Center (Akron, OH)
Children’s Hospital of Philadelphia (PA)
Children’s Medical Center of Dallas (TX)
Clarian Health–Methodist Hospital (IN)
Cleno Lab (Puerto Rico)
Clinical Laboratory Partners, LLC (CT)
CLSI Laboratories (PA)
Columbia Regional Hospital (MO)
Commonwealth of Kentucky Community Hospital of Lancaster (PA)
Compunet Clinical Laboratories (OH)
Cook County Hospital (IL)
Cook Children’s Medical Center (TX)
Covance Central Laboratory Services (IN)
Danish Veterinary Laboratory (Denmark)
Danville Regional Medical Center (VA)
Delaware Public Health Laboratory Department of Health & Community Services (New Brunswick, Canada)
DesPeres Hospital (MO)
DeTar Hospital (TX)
Detroit Health Department (MI)
Diagnosticos da America S/A (Brazil)
Dr. Everett Chalmers Hospital (New Brunswick, Canada)
Doctors Hospital (Bahamas)
Duke University Medical Center (NC)
E.A. Conway Medical Center (LA)
Eastern Maine Medical Center
East Side Clinical Laboratory (RI)
Eastern Health (Vic., Australia)
Elyria Memorial Hospital (OH)
Emory University Hospital (GA)
Esoterix Center for Infectious Disease (TX)
Fairview-University Medical Center (MN)
Federal Medical Center (MN)
Florida Hospital East Orlando
Foothills Hospital (Calgary, AB, Canada)
Fort St. John General Hospital (Fort St. John, BC, Canada)
Fox Chase Cancer Center (PA)
Fresenius Medical Care/Spectra East (NJ)
Fresno Community Hospital and Medical Center
Frye Regional Medical Center (NC)
Gambro Healthcare Laboratory Services (FL)
Gateway Medical Center (TN)
Geisinger Medical Center (PA)
Grady Memorial Hospital (GA)
Guthrie Clinic Laboratories (PA)
Hahnemann University Hospital (PA)
Harris Methodist Erath County (TX)
Harris Methodist Fort Worth (TX)
Hartford Hospital (CT)
Headwaters Health Authority (Alberta, Canada)
Health Network Lab (PA)
Health Partners Laboratories (VA)
Heartland Regional Medical Center (MO)
Highlands Regional Medical Center (FL)
Hoag Memorial Hospital Presbyterian (CA)
Holmes Regional Medical Center (FL)
Holzer Medical Center (OH)
Hopital du Sacre-Coeur de Montreal (Montreal, Quebec, Canada)
Hôpital Maisonneauve – Rosemont (Montreal, Canada)
Hospital for Sick Children (Toronto, ON, Canada)
Hospital Sousa Martins (Portugal)
Hotel Dieu Hospital (Windsor, ON, Canada)
Houston Medical Center (GA)
Huddinge University Hospital (Sweden)
Hurley Medical Center (MI)
Indiana State Board of Health
Indiana University
Institute of Medical and Veterinary Science (Australia)
International Health Management Associates, Inc. (IL)
Jackson Memorial Hospital (FL)
Jersey Shore Medical Center (NJ)
John C. Lincoln Hospital (AZ)
John F. Kennedy Medical Center (NJ)
John Peter Smith Hospital (TX)
Kadlec Medical Center (WA)
Kaiser Permanente Medical Care (CA)
Kaiser Permanente (MD)
Kantonsspital (Switzerland)
Keller Army Community Hospital (NY)
Kenora-Rainy River Regional Laboratory Program (Ontario, Canada)
Kern Medical Center (CA)
<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimball Medical Center (NJ)</td>
</tr>
<tr>
<td>King Faisal Specialist Hospital (Saudi Arabia)</td>
</tr>
<tr>
<td>King Khalid National Guard Hospital (Saudi Arabia)</td>
</tr>
<tr>
<td>King’s Daughter Medical Center (KY)</td>
</tr>
<tr>
<td>Klinični Center (Slovenia)</td>
</tr>
<tr>
<td>Laboratories at Bonfils (CO)</td>
</tr>
<tr>
<td>Laboratoire de Santé Publique du Québec (Canada)</td>
</tr>
<tr>
<td>Laboratório Fleury S/C Ltda. (Brazil)</td>
</tr>
<tr>
<td>Laboratory Corporation of America (NJ)</td>
</tr>
<tr>
<td>Laboratory Corporation of America (MO)</td>
</tr>
<tr>
<td>LAC and USC Healthcare Network (CA)</td>
</tr>
<tr>
<td>Lakeland Regional Medical Center (FL)</td>
</tr>
<tr>
<td>Lancaster General Hospital (PA)</td>
</tr>
<tr>
<td>Langley Air Force Base (VA)</td>
</tr>
<tr>
<td>LeBonheur Children’s Medical Center (TN)</td>
</tr>
<tr>
<td>L’Hôpital-Dieu de Québec (Canada)</td>
</tr>
<tr>
<td>Libero Instituto Univ. Campus BioMedico (Italy)</td>
</tr>
<tr>
<td>Louisiana State University Medical Center</td>
</tr>
<tr>
<td>Maccabi Medical Care and Health Fund (Israel)</td>
</tr>
<tr>
<td>Magee Womens Hospital (PA)</td>
</tr>
<tr>
<td>Malcolm Grow USAF Medical Center (MD)</td>
</tr>
<tr>
<td>Manitoba Health (Winnipeg, Canada)</td>
</tr>
<tr>
<td>Martin Luther King/Drew Medical Center (CA)</td>
</tr>
<tr>
<td>Massachusetts General Hospital (Microbiology Laboratory)</td>
</tr>
<tr>
<td>MDS Metro Laboratory Services (Burnaby, BC, Canada)</td>
</tr>
<tr>
<td>Medical College of Virginia Hospital</td>
</tr>
<tr>
<td>Medicare/Medicaid Certification, State of North Carolina</td>
</tr>
<tr>
<td>Memorial Medical Center (IL)</td>
</tr>
<tr>
<td>Memorial Medical Center (LA)</td>
</tr>
<tr>
<td>Jefferson Davis Hwy</td>
</tr>
<tr>
<td>Memorial Medical Center (LA) Naplesy Avenue</td>
</tr>
<tr>
<td>Methodist Hospital (TX)</td>
</tr>
<tr>
<td>Methodist Hospitals of Memphis (TN)</td>
</tr>
<tr>
<td>MetroHealth Medical Center (OH)</td>
</tr>
<tr>
<td>Michigan Department of Community Health</td>
</tr>
<tr>
<td>Mississippi Baptist Medical Center</td>
</tr>
<tr>
<td>Monte Tabor – Centro Italo - Brazilian de Promocao (Brazil)</td>
</tr>
<tr>
<td>Montreal Children’s Hospital (Canada)</td>
</tr>
<tr>
<td>Montreal General Hospital (Canada)</td>
</tr>
<tr>
<td>MRL Pharmaceutical Services, Inc. (VA)</td>
</tr>
<tr>
<td>MRL Reference Laboratory (CA)</td>
</tr>
<tr>
<td>Nassau County Medical Center (NY)</td>
</tr>
<tr>
<td>National Institutes of Health (MD)</td>
</tr>
<tr>
<td>Naval Hospital – Corpus Christi (TX)</td>
</tr>
<tr>
<td>Naval Surface Warfare Center (IN)</td>
</tr>
<tr>
<td>Nebraska Health System</td>
</tr>
<tr>
<td>New Britain General Hospital (CT)</td>
</tr>
<tr>
<td>New England Fertility Institute (CT)</td>
</tr>
<tr>
<td>New Mexico VA Health Care Systems</td>
</tr>
<tr>
<td>North Carolina State Laboratory of Public Health</td>
</tr>
<tr>
<td>North Kansas City Hospital (MO)</td>
</tr>
<tr>
<td>North Shore – Long Island Jewish Health System (NY)</td>
</tr>
<tr>
<td>Northwestern Memorial Hospital (IL)</td>
</tr>
<tr>
<td>O.L. Vrouwziekenhuis (Belgium)</td>
</tr>
<tr>
<td>Ordre professionnel des technologists médicaux du Québec</td>
</tr>
<tr>
<td>Ospedali Riuniti (Italy)</td>
</tr>
<tr>
<td>The Ottawa Hospital (Ottawa, ON, Canada)</td>
</tr>
<tr>
<td>Our Lady of Lourdes Hospital (NJ)</td>
</tr>
<tr>
<td>Our Lady of the Resurrection Medical Center (IL)</td>
</tr>
<tr>
<td>Pathology and Cytology Laboratories, Inc. (KY)</td>
</tr>
<tr>
<td>The Permanente Medical Group (CA)</td>
</tr>
<tr>
<td>Piedmont Hospital (GA)</td>
</tr>
<tr>
<td>Pikeville Methodist Hospital (KY)</td>
</tr>
<tr>
<td>Pocono Hospital (PA)</td>
</tr>
<tr>
<td>Presbyterian Hospital of Dallas (TX)</td>
</tr>
<tr>
<td>Queen Elizabeth Hospital (Prince Edward Island, Canada)</td>
</tr>
<tr>
<td>Queensland Health Pathology Services (Australia)</td>
</tr>
<tr>
<td>Quest Diagnostics Incorporated (CA)</td>
</tr>
<tr>
<td>Quintiles Laboratories, Ltd. (GA)</td>
</tr>
<tr>
<td>Regions Hospital</td>
</tr>
<tr>
<td>Reid Hospital & Health Care Services (IN)</td>
</tr>
<tr>
<td>Research Medical Center (MO)</td>
</tr>
<tr>
<td>Rex Healthcare (NC)</td>
</tr>
<tr>
<td>Rhode Island Department of Health Laboratories</td>
</tr>
<tr>
<td>Riyadh Armed Forces Hospital (Saudi Arabia)</td>
</tr>
<tr>
<td>Royal Columbian Hospital (New Westminster, BC, Canada)</td>
</tr>
<tr>
<td>Sacred Heart Hospital (MD)</td>
</tr>
<tr>
<td>Saint Mary’s Regional Medical Center (NY)</td>
</tr>
<tr>
<td>St. Alexius Medical Center (ND)</td>
</tr>
<tr>
<td>St. Anthony Hospital (CO)</td>
</tr>
<tr>
<td>St. Anthony’s Hospital (FL)</td>
</tr>
<tr>
<td>St. Barnabas Medical Center (NJ)</td>
</tr>
<tr>
<td>St-Eustache Hospital (Quebec, Canada)</td>
</tr>
<tr>
<td>St. Francis Medical Ctr. (CA)</td>
</tr>
<tr>
<td>St. John Hospital and Medical Center (MI)</td>
</tr>
<tr>
<td>St. John Regional Hospital (St. John, NB, Canada)</td>
</tr>
<tr>
<td>St. Joseph Hospital (NE)</td>
</tr>
<tr>
<td>St. Joseph’s Hospital – Marshfield Clinic (WI)</td>
</tr>
<tr>
<td>St. Joseph Mercy Hospital (MI)</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital (TN)</td>
</tr>
<tr>
<td>St. Luke’s Regional Medical Center (IA)</td>
</tr>
<tr>
<td>St. Mary of the Plains Hospital (TX)</td>
</tr>
<tr>
<td>St. Mary’s Hospital & Medical Center (CO)</td>
</tr>
<tr>
<td>St. Paul’s Hospital (Vancouver, BC, Montreal)</td>
</tr>
<tr>
<td>St. Vincent Medical Center (CA)</td>
</tr>
<tr>
<td>Ste. Justine Hospital (Montreal, PQ, Canada)</td>
</tr>
<tr>
<td>Salina Regional Health Center (KS)</td>
</tr>
<tr>
<td>San Francisco General Hospital (CA)</td>
</tr>
<tr>
<td>Santa Clara Valley Medical Center (CA)</td>
</tr>
<tr>
<td>Seoul Nat’l University Hospital (Korea)</td>
</tr>
<tr>
<td>Shanghai Center for the Clinical Laboratory (China)</td>
</tr>
<tr>
<td>South Bend Medical Foundation (IN)</td>
</tr>
<tr>
<td>Southwest Texas Methodist Hospital (TX)</td>
</tr>
<tr>
<td>South Western Area Pathology Service (Australia)</td>
</tr>
<tr>
<td>Southern Maine Medical Center</td>
</tr>
<tr>
<td>Specialty Laboratories, Inc. (CA)</td>
</tr>
<tr>
<td>Stanford Hospital and Clinics (CA)</td>
</tr>
</tbody>
</table>
OFFICERS

Donna M. Meyer, Ph.D.,
President
CHRISTUS Health

Thomas L. Hearn, Ph.D.,
President Elect
Centers for Disease Control and
Prevention

Emil Voelkert, Ph.D.,
Secretary
Roche Diagnostics GmbH

Gerald A. Hoeltge, M.D.,
Treasurer
The Cleveland Clinic Foundation

F. Alan Andersen, Ph.D.,
Immediate Past President
Cosmetic Ingredient Review

John V. Bergen, Ph.D.,
Executive Director

BOARD OF DIRECTORS

Susan Blonshine, RRT, RPFT,
FAARC
TechEd

Wayne Brinster
BD

Kurt H. Davis, FCSMLS, CAE
Canadian Society for Medical
Laboratory Science

Lillian J. Gill, M.S.
FDA Center for Devices and
Radiological Health

Robert L. Habig, Ph.D.
Habig Consulting Group

Carolyn D. Jones, J.D., M.P.H.
AdvaMed

Tadashi Kawai, M.D., Ph.D.
International Clinical Pathology
Center

J. Stephen Kroger, M.D., FACP
COLA

Willie E. May, Ph.D
National Institute of Standards and
Technology

Gary L. Myers, Ph.D.
Centers for Disease Control and
Prevention

Barbara G. Painter, Ph.D.
Bayer Corporation (Retired)

Judith A. Yost, M.A., M.T.(ASCP)
Centers for Medicare & Medicaid
Services
Contents (Continued)

Table 1. Solvents and Diluents for Preparation of Stock Solutions of Antifungal Agents20

Table 2. Scheme for Preparing Dilutions of Water-Soluble Antifungal Agents to Be Used in Broth Dilution Susceptibility Tests .. 21

Table 3. Scheme for Preparing Dilution Series of Water-Insoluble Antifungal Agents to Be Used in Broth Dilution Susceptibility Tests .. 21

Table 4. Recommended 48-hour MIC Limits for Two Quality Control and Four Reference Strains for Broth Macrodilution Procedures. ... 22

Table 5. Recommended 24- and 48-hour MIC Limits for Two Quality Control Strains for Broth Microdilution. .. 23

Table 6. Composition of RPMI 1640 Medium (with glutamine and phenol red but without bicarbonate) .. 24

Table 7. Modifications for Special Circumstances .. 25

Summary of Comments and Subcommittee Responses .. 26

Summary of Delegate Comments and Subcommittee Responses ... 27

Related NCCLS Publications .. 29
Foreword

With the increased incidence of systemic fungal infections and the growing number of antifungal agents, laboratory aids to guide in the selection of antifungal therapy have gained greater attention. In 1982, the NCCLS Area Committee for Microbiology formed the Subcommittee on Antifungal Susceptibility Testing. In 1985, this subcommittee published its first report in which the results of a questionnaire and a small collaborative study were presented. These results are summarized as follows:

- Approximately 20% of the responding NCCLS membership whose hospitals had greater than 200 beds were performing antifungal testing.
- Most testing involved broth dilution methodology.
- Most strains tested were *Candida albicans* or other species of yeasts.
- Most centers tested only a few isolates per year.
- Agreement in minimal inhibitory concentration (MIC) results among several laboratories that participated in a collaborative study was unacceptably low.

Based on these findings, the subcommittee concluded that it would be useful to work toward a more reproducible reference testing procedure.

Agreement already existed regarding several elements of the procedure. To facilitate further analysis of various test conditions, the reference method should be a broth macrodilution procedure. Because of examples of drug antagonism by some complex media for certain antifungals, the subcommittee restricted its interest only to fully defined synthetic media. Drug stock solution preparation and dilution procedures previously developed for antibacterial testing procedures were adopted with minor modifications.

Despite agreement in some areas, other factors required additional data to be resolved. These included inoculum preparation; inoculum size; choice among several synthetic media; temperature of incubation; duration of incubation; and end-point definition. These factors were the focus of a series of collaborative studies. As a result; agreement within the subcommittee was achieved on all of the factors and led to the publication of M27-P in 1992. In the next four years (1992-1996), reference MIC ranges were established for two quality control strains for the available antifungal agents, and broth microdilution procedures paralleling the broth macrodilution reference procedure became available. This information was included in a revised standard in 1995 (M27-T). In further revising the document, the subcommittee focused its attention on developing relevant breakpoints for available antifungal agents, included in M27-A (1997). Since then the subcommittee has developed 24- and 48-hour reference MIC ranges for microdilution testing of both established and newly introduced antifungal agents. The results of these studies are included in the current M27-A2 document.

Standard Precautions

Because it is often impossible to know what might be infectious, all human blood specimens are to be treated as infectious and handled according to “standard precautions.” Standard precautions are new guidelines that combine the major features of “universal precautions and body substance isolation” practices. Standard precautions cover the transmission of any pathogen and thus are more comprehensive than universal precautions which are intended to apply only to transmission of blood-borne pathogens. Standard precaution and universal precaution guidelines are available from the U.S. Centers for Disease Control and Prevention (Guideline for Isolation Precautions in Hospitals. Infection Control and Hospital Epidemiology. CDC. 1996;Vol 17;1:53-80), (MMWR 1987;36[suppl 2S]2S-1S), and (MMWR
For specific precautions for preventing the laboratory transmission of blood-borne infection from laboratory instruments and materials and for recommendations for the management of blood-borne exposure, refer to the most current edition of NCCLS document M29—Protection of Laboratory Workers fromOccupationally Acquired Infections.

Key Words
Antifungal, broth macrodilution, broth microdilution, susceptibility testing, yeasts

The Quality System Approach
NCCLS subscribes to a quality system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents through a gap analysis. The approach is based on the model presented in the most current edition of NCCLS HS1—A Quality System Model for Health Care. The quality system approach applies a core set of “quality system essentials (QSEs),” basic to any organization, to all operations in any healthcare service’s path of workflow. The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The quality system essentials (QSEs) are:

<table>
<thead>
<tr>
<th>QSEs</th>
<th>Documents & Records</th>
<th>Information Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organization</td>
<td>Information Management</td>
</tr>
<tr>
<td></td>
<td>Personnel</td>
<td>Occurrence Management</td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>Assessment</td>
</tr>
<tr>
<td></td>
<td>Purchasing & Inventory</td>
<td>Process Improvement</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
<td>Service & Satisfaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facilities & Safety</td>
</tr>
</tbody>
</table>

M27-A2 Addresses the Following Quality System Essentials (QSEs):

<table>
<thead>
<tr>
<th>Documents & Records</th>
<th>Organization</th>
<th>Personnel</th>
<th>Equipment</th>
<th>Purchasing & Inventory</th>
<th>Process Control</th>
<th>Information Management</th>
<th>Occurrence Management</th>
<th>Assessment</th>
<th>Process Improvement</th>
<th>Service & Satisfaction</th>
<th>Facilities & Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from NCCLS document HS1—A Quality System Model for Health Care
Path of Workflow

A path of workflow is the description of the necessary steps to deliver the particular product or service that the organization or entity provides. For example, GP26-A2 defines a clinical laboratory path of workflow which consists of three sequential processes: preanalytical, analytical, and postanalytical. All clinical laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information. The arrow depicts the sequence, from left to right, that any clinical laboratory follows. In addition, the necessary steps or subprocesses are listed below them.

Adapted from NCCLS document HS1-A—*A Quality System Model for Health Care*

Most of NCCLS’s documents relate to the clinical laboratory, so the most common path of workflow will be that depicted above. The path of workflow for other healthcare activities, e.g., respiratory services, imaging services, etc., or for other types of organizations, e.g., medical device manufacturers, will differ from that of the clinical laboratory. All such paths of workflow describe the sequence of activities necessary to produce the organization’s or an entity’s specific product or services. For those documents that relate to other paths of workflow, the icon will reflect different process steps.

M27-A2 Addresses the Following Steps Within the Clinical Laboratory Path of Workflow

<table>
<thead>
<tr>
<th>Preanalytical</th>
<th>Analytical</th>
<th>Postanalytical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Assessment</td>
<td>Test Request</td>
<td>Laboratory Interpretaion</td>
</tr>
<tr>
<td>Test Request</td>
<td>Specimen Collection</td>
<td>Results Report</td>
</tr>
<tr>
<td>Specimen Collection</td>
<td>Specimen Transport</td>
<td>Post-test Specimen Management</td>
</tr>
<tr>
<td>Specimen Transport</td>
<td>Specimen Receipt</td>
<td></td>
</tr>
<tr>
<td>Specimen Receipt</td>
<td>Testing Review</td>
<td>X</td>
</tr>
<tr>
<td>Testing Review</td>
<td>Laboratory Interpretation</td>
<td>X</td>
</tr>
<tr>
<td>Laboratory Interpretation</td>
<td>Results Report</td>
<td>X</td>
</tr>
<tr>
<td>Results Report</td>
<td>Post-test Specimen Management</td>
<td>X</td>
</tr>
<tr>
<td>Post-test Specimen Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Introduction

The method described in this document is intended for testing yeasts that cause invasive infections. These yeasts encompass Candida species (including Candida glabrata) and Cryptococcus neoformans. The method has not been used in studies of the yeast form of dimorphic fungi, such as Blastomyces dermatitidis or Histoplasma capsulatum variety capsulatum. Moreover, testing filamentous fungi (moulds) introduces several additional problems in standardization not addressed by the current procedure. A reference method for broth dilution antifungal susceptibility testing of filamentous fungi has been developed and is now available as NCCLS document M38—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi.13,14

M27-A2 is a “reference” standard being developed through a consensus process to facilitate the agreement among laboratories in measuring the susceptibility of yeasts to antifungal agents. An important use of a reference method is to provide a standard basis from which other methods can be developed, which also will result in interlaboratory agreement within specified ranges. For example, broth microdilution methods, described in this document, have been configured to produce results paralleling those obtained by the reference method. Such methods might have particular advantages, such as ease of performance, economy, or more rapid results; therefore, their development could be highly desirable. To the extent that any method produces concordant results with this reference method, it would be considered to be in conformity with M27-A2.

1.1 Scope

This document describes a method for testing the susceptibility to antifungal agents of yeast that cause infections, including Candida species and Cryptococcus neoformans. This method has not been extensively validated in yeast form of dimorphic fungi, such as Blastomyces dermatitidis or Histoplasma capsulatum variety capsulatum.

The subcommittee has focused on developing relevant breakpoints for available antifungal agents,11 and reference MIC ranges for microdilution testing of both established and newly introduced antifungal agents.12

1.2 Definitions

Antibiogram, n – Overall profile of antimicrobial susceptibility results of a microbial species to a battery of antimicrobial agents.

Minimal inhibitory concentration (MIC), n – The lowest concentration of an antimicrobial agent that prevents visible growth of a microorganism in an agar or broth dilution susceptibility test.

a Some of these definitions are found in NCCLS document NRSCL8—Terminology and Definitions for Use in NCCLS Documents. For complete definitions and detailed source information, please refer to the most current edition of that document.