Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard—Third Edition

This document provides the currently recommended techniques for antimicrobial agent disk and dilution susceptibility testing, criteria for quality control testing, and interpretive criteria for veterinary use.

A standard for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Advancing Quality in Health Care Testing

The Clinical and Laboratory Standards Institute (CLSI) (formerly NCCLS) is an international, interdisciplinary, nonprofit, standards-developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the health care community. It is recognized worldwide for the application of its unique consensus process in the development of standards and guidelines for patient testing and related health care issues. Our process is based on the principle that consensus is an effective and cost-effective way to improve patient testing and health care services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, we provide an open and unbiased forum to address critical issues affecting the quality of patient testing and health care.

PUBLICATIONS

A document is published as a standard, guideline, or committee report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS

The CLSI voluntary consensus process is a protocol establishing formal criteria for:

- the authorization of a project
- the development and open review of documents
- the revision of documents in response to comments by users
- the acceptance of a document as a consensus standard or guideline.

Most documents are subject to two levels of consensus—“proposed” and “approved.” Depending on the need for field evaluation or data collection, documents may also be made available for review at an intermediate consensus level.

Proposed A consensus document undergoes the first stage of review by the health care community as a proposed standard or guideline. The document should receive a wide and thorough technical review, including an overall review of its scope, approach, and utility, and a line-by-line review of its technical and editorial content.

Approved An approved standard or guideline has achieved consensus within the health care community. It should be reviewed to assess the utility of the final document, to ensure attainment of consensus (ie, that comments on earlier versions have been satisfactorily addressed), and to identify the need for additional consensus documents.

Our standards and guidelines represent a consensus opinion on good practices and reflect the substantial agreement by materially affected, competent, and interested parties obtained by following CLSI’s established consensus procedures. Provisions in CLSI standards and guidelines may be more or less stringent than applicable regulations. Consequently, conformance to this voluntary consensus document does not relieve the user of responsibility for compliance with applicable regulations.

COMMENTS

The comments of users are essential to the consensus process. Anyone may submit a comment, and all comments are addressed, according to the consensus process, by the committee that wrote the document. All comments, including those that result in a change to the document when published at the next consensus level and those that do not result in a change, are responded to by the committee in an appendix to the document. Readers are strongly encouraged to comment in any form and at any time on any document. Address comments to the Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, PA 19087, USA.

VOLUNTEER PARTICIPATION

Health care professionals in all specialties are urged to volunteer for participation in CLSI projects. Please contact us at customerservice@clsi.org or +610.688.0100 for additional information on committee participation.
Abstract

If the susceptibility of a bacterial pathogen to antimicrobial agents cannot be predicted based on the identity of the organism alone, *in vitro* antimicrobial susceptibility testing of the organism isolated from the disease processes in animals is indicated. Susceptibility testing is particularly necessary in those situations where the etiologic agent belongs to a bacterial species for which resistance to commonly used antimicrobial agents has been documented, or could arise.

A variety of laboratory techniques can be used to measure the *in vitro* susceptibility of bacteria to antimicrobial agents. Clinical and Laboratory Standards Institute document M31-A3—*Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard—Third Edition* describes the standard agar disk diffusion method, as well as standard broth dilution (macrodilution and microdilution) and agar dilution techniques. It also includes a series of procedures designed to standardize test performance. The performance, applications, and limitations of the current CLSI-recommended methods are described.

The tabular information in this document presents the most current information for drug selection, interpretation, and quality control. In an increasing number of compounds where veterinary-specific interpretive criteria are not available, human interpretive criteria are used. As more veterinary-specific information becomes available, these changes will be incorporated into future revisions of this document.

Committee Membership

Area Committee on Microbiology

Mary Jane Ferraro, PhD, MPH
Chairholder
Massachusetts General Hospital
Boston, Massachusetts

John H. Rex, MD, FACP
Vice-Chairholder
AstraZeneca
Cheshire, United Kingdom

Barbara Ann Body, PhD, D(ABMM)
LabCorp
Burlington, North Carolina

Betty (Betz) A. Forbes, PhD, D(ABMM)
Medical College of Virginia Campus
Richmond, Virginia

Freddie Mae Poole
FDA Center for Devices and Radiological Health
Rockville, Maryland

Daniel F. Sahm, PhD
Eurofins Medinet
Herndon, Virginia

Fred C. Tenover, PhD, ABMM
Centers for Disease Control and Prevention
Atlanta, Georgia

Michael L. Wilson, MD
Denver Health Medical Center
Denver, Colorado

Advisors

Nancy L. Anderson, MMSc, MT(ASCP)
Centers for Disease Control and Prevention
Atlanta, Georgia

Ellen Jo Baron, PhD
Stanford Hospital and Clinics
Palo Alto, California

Donald R. Callihan, PhD
BD Diagnostic Systems
Sparks, Maryland

Lynne S. Garcia, MS
LSG & Associates
Santa Monica, California

Richard L. Hodinka, PhD
Children’s Hospital of Philadelphia
Philadelphia, Pennsylvania

James H. Jorgensen, PhD
University of Texas Health Science Center
San Antonio, Texas

Michael A. Pfaller, MD
University of Iowa College of Medicine
Iowa City, Iowa

Robert P. Rennie, PhD
University of Alberta Hospital
Edmonton, Alberta, Canada

Thomas R. Shryock, PhD
Elanco Animal Health
Greenfield, Indiana

Jana M. Swenson, MMSc
Centers for Disease Control and Prevention
Atlanta, Georgia

Melvin P. Weinstein, MD
Robert Wood Johnson Medical School
New Brunswick, New Jersey

Matthew A. Wikler, MD, MBA, FIDSA
Pacific Beach BioSciences, Inc.
San Diego, California

Gail L. Woods, MD
Central Arkansas Veterans Healthcare
Little Rock, Arkansas

Subcommittee on Veterinary Antimicrobial Susceptibility Testing

Jeffrey L. Watts, PhD, RM(AAM)
Chairholder
Pfizer Animal Health
Richmond, Michigan

Mike Apley, DVM, PhD
Kansas State University
Manhattan, Kansas

Donald J. Bade
Microbial Research, Inc.
Fort Collins, Colorado

Steven D. Brown, PhD
The Clinical Microbiology Institute
Wilsonville, Oregon

Jeffrey T. Gray, PhD
Des Moines University
Des Moines, Iowa

Henry Heine, PhD
USAMRIID
Ft. Detrick, Maryland

Rob P. Hunter, MS, PhD
Elanco Animal Health
Greenfield, Indiana

Dik J. Mevius, DVM, PhD
Central Institute for Animal Disease Control-CIDC-Lelystad
Lelystad, Netherlands

Mark G. Papich, DVM, MS
North Carolina State University
Raleigh, North Carolina

Peter Silley, PhD
MB Consult Limited
Lymington, Hampshire, United Kingdom

Gary E. Zurenko, MS
Micromyx, LLC
Kalamazoo, Michigan

Advisors

Jo Abraham, DVM, MS
Bayer Health Care LLC
Shawnee Mission, Kansas

Melanie R. Berson, DVM
FDA Center for Veterinary Medicine
Rockville, Maryland

Diane M. Citron, M(ASCP)
R.M. Alden Research Laboratory
Santa Monica, California
Advisors (Continued)

Ronald N. Jones, MD
JMI Laboratories
North Liberty, Iowa

Cindy Lindeman
Pfizer Animal Health
Kalamazoo, Michigan

Jennifer Lorbach
Trek Diagnostic Systems, Inc.
Cleveland, Ohio

Carol W. Maddox, PhD
University of Illinois
Urbana, Illinois

Marilyn N. Martinez, PhD
FDA Center for Veterinary Medicine
Rockville, Maryland

Patrick McDermott, PhD
FDA Center for Veterinary Medicine
Laurel, Maryland

Stefan Schwarz, PhD
Institut Für Tierzucht (FAL)
Neustadt-Mariensee, Germany

Thomas R. Shryock, PhD
Elanco Animal Health
Greenfield, Indiana

Clyde Thornsberry, PhD
Eurofins Medinet
Franklin, Tennessee

John D. Turnidge, MD
Women’s and Children’s Hospital
North Adelaide, Australia

Robert D. Walker, PhD
Glade Park, Colorado

Ching Ching Wu, DVM, PhD
Purdue University School of Veterinary Medicine
West Lafayette, Indiana

S. Steve Yan, PhD
FDA Center for Veterinary Medicine
Rockville, Maryland

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania

Lois M. Schmidt, DA
Vice President, Standards Development and Marketing

Tracy A. Dooley, BS, MLT(ASCP)
Staff Liaison

Melissa A. Lewis
Editor
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. ix

1 Scope.. 1

2 Introduction .. 1

3 Definitions .. 2

4 Indications for Performing Susceptibility Testing ... 5

4.1 Limitations of Disk Diffusion and Dilution Methods ... 5

5 Selection of Antimicrobial Agents ... 6

5.1 Nonproprietary Names .. 7

5.2 Selection Guidelines .. 7

5.3 Antimicrobial Classes .. 7

5.4 Guidelines for Routine Reporting .. 11

5.5 Guidelines for Selective Reporting .. 11

5.6 Interpretive Categories ... 12

6 Disk Diffusion Susceptibility Tests ... 13

6.1 Equivalent MIC Breakpoints .. 13

6.2 Methodologies .. 13

6.3 *Streptococcus* spp. .. 19

6.4 *Pasteurella multocida* and *Mannheimia haemolytica* .. 20

6.5 Other Organisms ... 20

6.6 *Campylobacter jejuni* and Related Species .. 20

6.7 Anaerobic Organisms ... 21

6.8 Detection of Resistant Staphylococci .. 21

6.9 Detection of Resistant Enterococci ... 23

7 Broth and Agar Dilution Susceptibility Testing .. 24

7.1 Indications for Performing Broth and Agar Dilution Susceptibility Tests 25

8 Antimicrobial Agents ... 25

8.1 Source ... 25

8.2 Weighing Antimicrobial Agent Powders ... 25

8.3 Preparing Stock Solutions .. 27

8.4 Number of Concentrations Tested ... 27

9 Agar Dilution Procedure .. 27

9.1 Reagents and Materials ... 28

9.2 Agar Dilution Testing of *C. jejuni* .. 31

10 Broth Dilution Procedure .. 32

10.1 Broth Medium .. 32

10.2 Cation Adjustments .. 32

10.3 Preparing and Storing Diluted Antimicrobial Agents ... 33
Contents (Continued)

10.4 Standardizing Inoculum for Broth Dilution Testing ... 34
10.5 Inoculating Broth .. 34
10.6 Incubation ... 35
10.7 Interpreting Results ... 35

11 Broth Dilution Susceptibility Testing of Fastidious Organisms .. 35
11.1 *P. multocida* and *M. haemolytica* ... 35
11.2 Broth Microdilution Testing of *H. somni* and *A. pleuropneumoniae* 35
11.3 Broth Microdilution Testing of *Campylobacter* spp. ... 36
11.4 Streptococci and *Listeria* spp. .. 36
11.5 *Staphylococcus hyicus* ... 37

12 Detection of Resistant Staphylococci .. 37
12.1 Methicillin/Oxacillin Resistance ... 37
12.2 Oxacillin Screening Plates .. 38
12.3 Reduced Susceptibility to Vancomycin .. 38

13 Detection of Resistant Enterococci ... 39
13.1 Penicillin-Ampicillin Resistance .. 39
13.2 Vancomycin Resistance .. 39
13.3 High-Level Aminoglycoside Resistance ... 39

14 QC Guidelines .. 39
14.1 Purpose ... 39
14.2 QC Responsibilities .. 40
14.3 Suggested Reference Strains ... 41
14.4 Disk Diffusion Tests ... 43
14.5 Frequency of QC Testing (also refer to Appendix B) .. 43
14.6 Dilution Susceptibility Tests ... 45
14.7 Daily Testing ... 46
14.8 Weekly Testing ... 46
14.9 Corrective Action .. 46

15 Specific Antimicrobial Resistance Tests .. 48
15.1 Purpose ... 48
15.2 β-Lactamase Tests .. 48
15.3 Selecting a β-Lactamase Test ... 48
15.4 Detection of Extended-Spectrum, β-Lactamase-Producing Enterobacteriaceae 48

16 Cumulative Antimicrobial Susceptibility Profile ... 49

References ... 50

Appendix A. Antimicrobial Susceptibility QC Record ... 52

Appendix C1. Aerobic Dilution Daily QC Testing Protocol ... 55

Contents (Continued)

Appendix D1. Disk Diffusion QC Troubleshooting Guide ...57

Appendix D2. MIC QC Troubleshooting Guide..60

Table 1. Antimicrobial Agents That Could Be Considered for Routine Testing by Veterinary
Microbiology Laboratories ..63

Table 2. Zone Diameter Interpretive Standards and Minimal Inhibitory Concentration (MIC)
Breakpoints for Veterinary Pathogens ...65

Table 3. Culture Collection Numbers for Organisms Used for QC of Antimicrobial Susceptibility
Tests ..73

Table 4. Acceptable QC Ranges of Antimicrobial Disk Susceptibility Test Zone Diameters (mm)
for Reference Strains on Mueller-Hinton Agar (Except Where Noted) ...74

Table 5. Acceptable QC Ranges of MICs for Broth Microdilution (µg/mL) for Reference Strains.....76

Table 5A. Acceptable QC Ranges of MICs (µg/mL) for the Agar Dilution Method of Testing
Campylobacter jejuni ATCC® 33560 ...78

Table 5B. Proposed QC Ranges of MICs (µg/mL) for the Broth Microdilution Susceptibility
Method of Testing Campylobacter jejuni ATCC® 33560 ...79

Table 5C. Proposed QC Ranges of MICs (µg/mL) for Anaerobic Reference Strains Using Agar
Dilution ...80

Table 5D. Proposed QC Ranges of MICs (µg/mL) for Anaerobic Reference Strains Using Broth
Microdilution ...81

Table 6. Acceptable QC Ranges for Histophilus somni and Actinobacillus pleuropneumoniae82

Table 7. Standard Methods for Susceptibility Testing of Some Fastidious and Special Problem
Veterinary Pathogens ..83

Table 8. Solvents and Diluents for Preparation of Stock Solutions of Antimicrobial Agents
Requiring Solvents Other Than Water ..84

Table 9A. Screening and Confirmatory Tests for Extended-Spectrum β-lactamases (ESBLs) in
Klebsiella pneumoniae, K. oxytoca, Escherichia coli, and Proteus mirabilis (Zone Diameter)85

Table 9B. Screening and Confirmatory Tests for ESBLs in Klebsiella pneumoniae, K. oxytoca,
Escherichia coli, and Proteus mirabilis (MIC) ..86

Table 9C. Screening Tests for Oxacillin Resistance and Reduced Susceptibility to Vancomycin in
Staphylococcus aureus ...87

Table 9D. Disk Diffusion Test for Prediction of mecA-Mediated Resistance in Staphylococci88

Table 9E. Disk Diffusion Screening Tests for High-Level Aminoglycoside Resistance (HLAR)89
Contents (Continued)

Table 9F. MIC Screening Tests for High-Level Aminoglycoside Resistance (HLAR) and Vancomycin Resistance in *Enterococcus* spp...90

Glossary 1. Antimicrobial Class, Antimicrobial Subclass Designation, Antimicrobial Agents, and Antimicrobial Resistance Mechanisms..91

Glossary 2. Abbreviations for Antimicrobial Agents Incorporated Into Disks or Susceptibility Panels ..94

Summary of Comments and Subcommittee Responses..96

The Quality Management System Approach ...98

Related CLSI Reference Materials ..99
Foreword

This revision of the M31 standard represents a continuation of the collective efforts of the Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) to produce a globally useful consensus document for standardized in vitro susceptibility testing of veterinary pathogens. The subcommittee has worked diligently to improve M31-A2—Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard—Second Edition primarily by incorporating relevant updates derived from CLSI documents M2 and M7,1,2 as well as referencing other relevant CLSI documents. The subcommittee recognizes the ongoing CLSI efforts that are necessary to maintain CLSI documents M2 and M71,2 as “state of the art,” and expresses its appreciation to the Subcommittee on Antimicrobial Susceptibility Testing for its contributions. In addition, it is also appropriate to acknowledge the users of M31-A2 for their continued support and application of the standard in their daily work routine. The user community is encouraged to demonstrate responsible application of the CLSI methods when publishing work in peer-reviewed journals.

Global events and perceptions regarding the use of antimicrobial agents in animals have placed even more importance on the essential role of antimicrobial susceptibility testing of bacteria isolated from animals. For example, Judicious Use Guidelines (consensus directions for the appropriate use of antimicrobial agents in animals) have been developed worldwide by veterinary societies, food animal production organizations, government agencies, and international groups for both food and companion animals that emphasize the critical need for obtaining susceptibility data using standardized test methods and interpretive criteria. M31-A3 was updated to help meet these needs. Additionally, with an increased emphasis on national “resistance surveillance” programs, the use of a standardized antimicrobial susceptibility testing methodology and quality control (QC) provides a means to harmonize testing across national boundaries to facilitate data comparisons. As a first step toward worldwide applications of susceptibility testing using CLSI methods, a separate section lists QC strain entries in various international repositories. A workflow sheet for QC testing and a troubleshooting checklist are now available that should aid laboratories to track their performance for increased proficiency. Development of specific test methods and QC values for several antimicrobial agents effective against Campylobacter have also been developed, with the expectation that they will contribute to improved surveillance efforts.

Several additional antimicrobial agents have been reviewed since the previous edition of the document and have received veterinary-specific interpretive criteria approval from the subcommittee. M31-A3 features these new antimicrobial agents in Table 1, Group A (Veterinary-Specific Interpretive Criteria, Primary Test and Report). Further revisions were made to designate CLSI Approved Human Interpretive Criteria, Primary Test, Selectively Report (Group B); No Veterinary Species Specific- or Human-Specific Interpretive Criteria, Primary Test, Selectively Report (Group C); and Supplemental “AMDUCA-use” (US Animal Medicinal Drug Use Clarification Act) products, Selectively Test, Selectively Report (Group D). Additionally, refinements to definitions for “susceptible” and “resistant” designations are now included. Using the principles for breakpoint establishment, several older, generic antimicrobial agents have had veterinary-specific breakpoints set. The user should be aware that, while M31 is primarily derived from CLSI documents M2 and M7,1,2 which are “human” documents, this version incorporates more veterinary-specific information than before, although there is still ample opportunity for expansion. This standard should not be considered a static document because it will change as additional methods for testing veterinary pathogens become available, and in response to changes in antimicrobial agent usage in veterinary medicine. The subcommittee is committed to making every effort to incorporate the latest information into future versions of this standard.

The CLSI Subcommittee on VAST believes the document also serves as an educational resource. The subcommittee believes diagnostic laboratory personnel, veterinarians, students, and allied professionals will benefit from this document. Thus, a glossary of antimicrobial agents and resistance mechanisms, and a listing of antimicrobial resistance tests have been assembled for the convenience of investigators interested in this area.
The subcommittee anticipates that, as a result of the efforts of several new working groups, additional fastidious pathogens will be included in future editions, such as the intestinal spirochetes, *Haemophilus parasuis*, and mycoplasmas. Additionally, the inclusion of antimicrobial agents not currently marketed in the United States is welcomed for future editions, with the goal of making this document as globally useful as possible. A new working group within the subcommittee has been formed to address this need. As mentioned before, the inclusion of international entries in culture collections of QC strains is viewed as just the first step in this process, so leading laboratories might begin to use CLSI methods and compare them with their own national methods. Perhaps the most important future revision will be shifting antimicrobial agents from Table 1, Group C or B, to A. Because approvals of new antimicrobial agents for veterinary medicine are foreseen to be a rare event, the subcommittee will begin to shift its focus to the Generics Working Group to develop data in conformance with the M37 guideline to continue to advance generic drugs into Group A. I encourage and welcome input regarding ways to improve the document.

In closing, I recognize the tremendous efforts of the Subcommittee on Veterinary Antimicrobial Susceptibility Testing in producing this revised document. I would like to particularly acknowledge the individual members of the Editorial Working Group. Their willingness to sacrifice significant amounts of their personal time for the editing process and to address controversial topics demonstrates a real commitment to the CLSI process and the advancement of the veterinary and microbiology professions. I thank Jo Abraham, Jeff Gray, Janine Matlak, Maria Traczewski, Ching Ching Wu, and Steve Yan. Of particular note are Bob Walker, Pat McDermott, and Tom Fritsche, for their work in developing QC values for susceptibility testing of *Campylobacter*.

Thomas R. Shryock, PhD
Subcommittee on Veterinary Antimicrobial Susceptibility Testing

Mission Statement

To develop and promote performance standards and interpretive criteria for *in vitro* antimicrobial susceptibility testing of bacteria isolated from animals.

Key Words

Agar diffusion, agar dilution, antimicrobial agent, antimicrobial susceptibility, broth dilution, susceptibility testing, veterinary
Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard—Third Edition

1 Scope

This document provides veterinary diagnostic laboratories with currently recommended antimicrobial agent disk and dilution susceptibility test methods for bacteria isolated from animals; criteria for quality control (QC) testing; and interpretive criteria. The interpretive criteria are intended only to support therapeutic label claims for animal antimicrobial agent use and do not apply to label claims for disease prevention or performance enhancement. Additionally, the document provides a brief overview of the various antimicrobial classes and mechanisms of resistance to them, including specific tests for antimicrobial resistance.

In order to have a positive impact on clinical outcomes, help maintain antimicrobial effectiveness, assist clinicians in using antimicrobials safely, and minimize selection of resistant pathogens, laboratories must use a standardized, well-defined method for performing antimicrobial susceptibility testing (AST). A critical component of an AST method is the relationship between the test outcome and clinical outcome following treatment of the animal. In other words, an isolate yielding a susceptible AST result would be expected to respond clinically to that agent at the appropriate dosages while an AST result of resistant would imply that the treatment would fail. The purpose of the test method is not to mimic in vivo conditions; rather, it is to establish a method that provides reproducible results. Therefore, to ensure the generation of accurate, reproducible results when performing ASTs on veterinary pathogens, laboratories must adhere to a standard, well-defined method that includes the appropriate QC information. The M31-A3 document is predicated on providing AST methods that give accurate, reproducible, clinically relevant results for veterinary pathogens. It is important to consider that the judicious use of antimicrobials in the veterinary setting is directly related to the interpretive criteria associated with AST in that a given set of interpretive criteria only applies to that specific antimicrobial and disease combination. It is also important to note that the interpretive criteria in M31-A3 apply only if the laboratory has conducted susceptibility testing according to the specific methods found in the documents.

To date, an increasing number of antimicrobial agents have established veterinary-specific interpretive criteria. In most cases where veterinary-specific interpretive criteria are not established, human interpretive criteria are used when appropriate (see CLSI documents M2, M7, and M11). The veterinary-specific interpretive criteria have been established following M37, with particular attention given to product label indications and directions as approved by regulatory authorities. As more veterinary-specific information becomes available, changes in the listing of the agents will be incorporated into future revisions of this document and associated supplements. AST of bacteria from aquaculture environments has been advanced with the publication of two CLSI documents: M42 and M49.

2 Introduction

A variety of laboratory techniques can be used to measure the in vitro susceptibility of bacteria to antimicrobial agents. These include disk diffusion as well as broth and agar dilution techniques. This document includes a series of recommendations to help standardize the way these tests are performed. The performance, applications, and limitations of the currently recommended methods are described. Recommendations by the International Collaborative Study (ICS), as well as regulations established by the US Food and Drug Administration and other regulatory agencies, have been reviewed and the appropriate sections have been incorporated into this standard. This document describes current methodology applicable to therapeutic uses of antimicrobial agents used in veterinary medicine for diseases of animals, as described in Section 5. In recognition of the need for a global standard for AST for