Compressed hydrogen powered industrial truck on-board fuel storage and handling components
Legal Notice for Standards

Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWSOEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA Group; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Title: Compressed hydrogen powered industrial truck on-board fuel storage and handling components

To register for e-mail notification about any updates to this publication
- go to store.csagroup.org
- click on Product Updates

The List ID that you will need to register for updates to this publication is 2422806.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group’s policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.
Compressed hydrogen powered industrial truck on-board fuel storage and handling components

Published in March 2015 by CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3

To purchase standards and related publications, visit our Online Store at store.csagroup.org
or call toll-free 1-800-463-6727 or 416-747-4044.

ISBN 978-1-77139-426-0

© 2015 Canadian Standards Association
All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
Contents

Joint Automotive Technical Committee 6

Technical Subcommittee on Standards for Compressed Hydrogen Powered Industrial Truck On-Board Fuel Storage and Handling Components 8

Preface 10

1 Scope 11

2 Reference publications 13

3 Definitions 16

4 General construction and assembly 19
 4.1 Alternative design and construction 19
 4.2 Construction specifications 19
 4.3 Requirements 19
 4.4 General guidelines for service conditions 19
 4.4.1 Hydrogen fuel requirements 19
 4.4.2 Temperature ranges 19
 4.4.3 Transient container temperatures 20
 4.5 Material requirements 20
 4.6 Threaded openings 21
 4.7 Electrical equipment, electrical integrity, and wiring 21
 4.8 Non-metallic components 21
 4.9 Component literature 21
 4.9.1 General 21
 4.9.2 Literature requirements 22
 4.9.3 UL requirement 22
 4.10 Marking 22
 4.10.1 Marking information 22
 4.10.2 Marking methods — components 23
 4.11 Installation instructions 23

5 Quality assurance 23
 5.1 Quality systems 23
 5.2 Quality system compliance 23
 5.3 Independent inspection 23
 5.3.1 General 23
 5.3.2 Inspection agency requirements 23
 5.3.3 System audit 23
 5.3.4 Inspector's duties 24

6 Performance 24
 6.1 General test methods 24
 6.2 Hydrogen pre-cooling effects 25
 6.3 Hydrostatic strength 26
6.4 Leakage 26
6.4.1 Requirements 26
6.4.2 External leakage 26
6.4.3 Internal leakage 26
6.4.4 Components — test conditions 26
6.5 Excess torque resistance 26
6.6 Bending moment 26
6.7 Continuous operation 26
6.7.1 Test requirements 26
6.7.2 Ambient temperature cycling 27
6.7.3 High temperature cycling 27
6.7.4 Low temperature cycling 27
6.8 Environmental testing 27
6.8.1 Corrosion resistance 27
6.8.2 Ultraviolet resistance of external surfaces 27
6.8.3 Automotive fluid exposure 28
6.8.4 Atmospheric exposure 28
6.9 Abnormal electrical voltages 28
6.10 Vibration resistance 28
6.11 Stress corrosion cracking resistance 29
6.12 Insulation resistance 29
6.13 Pre-cooled hydrogen exposure test 29

7 Check valve 29
7.1 Scope 29
7.2 Marking 29
7.3 Construction and assembly 29
7.4 Check valve — performance 29
7.4.1 Check valve requirements 29
7.4.2 Leakage 29
7.4.3 Continuous operation 30

8 Manual valve 30
8.1 Scope 30
8.2 Marking 30
8.3 Construction and assembly 31
8.4 Manual valve — performance 31
8.4.1 Requirements 31
8.4.2 Continuous operation 31
8.4.3 Operating torque 32

9 Manual container valve 32
9.1 Scope 32
9.2 Marking 32
9.3 Construction and assembly 32
9.4 Manual container valve — performance 32
9.4.1 Requirements 32
9.4.2 Continuous operation 33
9.4.3 Operating torque 33

March 2015 © 2015 Canadian Standards Association
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Automatic valve and automatic container valve</td>
<td>33</td>
</tr>
<tr>
<td>10.1</td>
<td>Scope</td>
<td>33</td>
</tr>
<tr>
<td>10.2</td>
<td>Marking</td>
<td>33</td>
</tr>
<tr>
<td>10.3</td>
<td>Construction and assembly</td>
<td>33</td>
</tr>
<tr>
<td>10.4</td>
<td>Automatic valve and automatic container valve — performance</td>
<td>33</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Requirements</td>
<td>33</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Continuous operation — automatic valve</td>
<td>33</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Continuous operation - automatic container valve</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Pressure sensors and pressure gauges</td>
<td>34</td>
</tr>
<tr>
<td>11.1</td>
<td>Scope</td>
<td>34</td>
</tr>
<tr>
<td>11.2</td>
<td>Marking</td>
<td>34</td>
</tr>
<tr>
<td>11.3</td>
<td>Construction and assembly</td>
<td>34</td>
</tr>
<tr>
<td>11.4</td>
<td>Pressure sensors and pressure gauges — performance</td>
<td>34</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Requirements</td>
<td>34</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Continuous operation</td>
<td>34</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Abnormal electric voltages</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Pressure regulator</td>
<td>35</td>
</tr>
<tr>
<td>12.1</td>
<td>Scope</td>
<td>35</td>
</tr>
<tr>
<td>12.2</td>
<td>Marking</td>
<td>35</td>
</tr>
<tr>
<td>12.3</td>
<td>Construction and assembly</td>
<td>35</td>
</tr>
<tr>
<td>12.4</td>
<td>Pressure regulator — performance</td>
<td>35</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Requirements</td>
<td>35</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Hydrostatic strength</td>
<td>35</td>
</tr>
<tr>
<td>12.4.3</td>
<td>External leakage</td>
<td>36</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Continuous operation</td>
<td>36</td>
</tr>
<tr>
<td>12.4.5</td>
<td>Pressure impulse</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>Pressure relief device</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>Excess flow valve</td>
<td>36</td>
</tr>
<tr>
<td>14.1</td>
<td>Scope</td>
<td>36</td>
</tr>
<tr>
<td>14.2</td>
<td>Marking</td>
<td>36</td>
</tr>
<tr>
<td>14.3</td>
<td>Construction and assembly</td>
<td>36</td>
</tr>
<tr>
<td>14.4</td>
<td>Excess flow valve — performance</td>
<td>37</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Requirements</td>
<td>37</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Internal leakage</td>
<td>37</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Bypass flow</td>
<td>37</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Excess torque</td>
<td>37</td>
</tr>
<tr>
<td>14.4.5</td>
<td>Bending moment</td>
<td>37</td>
</tr>
<tr>
<td>14.4.6</td>
<td>Continuous operation</td>
<td>37</td>
</tr>
<tr>
<td>14.4.7</td>
<td>Operation</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>Rigid fuel line</td>
<td>37</td>
</tr>
<tr>
<td>15.1</td>
<td>Scope</td>
<td>37</td>
</tr>
<tr>
<td>15.2</td>
<td>Marking</td>
<td>37</td>
</tr>
<tr>
<td>15.3</td>
<td>Construction and assembly</td>
<td>37</td>
</tr>
<tr>
<td>15.4</td>
<td>Rigid fuel line — performance</td>
<td>38</td>
</tr>
</tbody>
</table>
15.4.1 Requirements 38
15.4.2 Continuous operation 38
15.4.3 Bending 38

16 Flexible fuel line 38

17 Filter 38
17.1 Scope 38
17.2 Marking 38
17.3 Construction and assembly 38
17.4 Filter — performance 38
17.4.1 Requirements 38
17.4.2 Continuous operation 39

18 Fitting 39
18.1 Scope 39
18.2 Marking 39
18.3 Construction and assembly 39
18.4 Fitting — performance 39
18.4.1 Requirements 39
18.4.2 Continuous operation 39
18.4.3 Repeated assembly 39

19 Discharge line closures 40
19.1 Scope 40
19.2 Markings 40
19.3 Construction and assembly 40
19.4 Discharge line closure — performance 41
19.4.1 Requirements 41
19.4.2 Leakage venting 41
19.4.3 Continued operation 41

20 Container 41
20.1 Scope 41
20.2 Markings 41
20.3 Construction and assembly 42
20.3.1 Compliance 42
20.3.2 Records of manufacture 42
20.3.3 Instructions 42
20.3.4 Fatigue life qualification by analysis 42
20.4 Container — performance 42
20.4.1 Fatigue life and mounting requirements 42
20.4.2 Leak before break (LBB) 43
20.4.3 Types 1, 2, 3, and 4 metallic components and containers 43
20.4.4 Fatigue life verification by hydrogen gas cycle test 43
20.4.5 Hydrostatic test 46
20.4.6 Leak test 46

21 Manufacturing and production test plan 46
21.1 Plan requirements 46
21.2 System components and records 46
21.3 Component traceability program 46
21.4 Component testing 47
21.5 Container inspection requirements 47
21.6 Container fatigue life analysis verification 47
21.7 Compliance testing 47

Annex A (informative) — Pressure definitions 48
Annex B (normative) — Component-specific applicable tests 49
Annex C (informative) — Fuel container record template 51
Joint Automotive Technical Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Location</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Birdsall</td>
<td>Toyota Motor Engineering & Manufacturing North America</td>
<td>Garden, California, USA</td>
<td>User Interest</td>
</tr>
<tr>
<td>D. Bowerson</td>
<td>Chrysler Group LLC</td>
<td>Auburn Hills, Michigan, USA</td>
<td>User Interest</td>
</tr>
<tr>
<td>R. Boyd</td>
<td>Boyd Hydrogen LLC</td>
<td>Orinda, California, USA</td>
<td>General Interest</td>
</tr>
<tr>
<td>S.R. Caudle</td>
<td>Southern California Gas Company</td>
<td>Los Angeles, California, USA</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>J.P. Cohen</td>
<td>Air Products and Chemicals Inc.</td>
<td>Allentown, Pennsylvania, USA</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>J.B. Dimmick</td>
<td>Clean Vehicle Education Foundation</td>
<td>Waukesha, Wisconsin, USA</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>R.R. Frazier</td>
<td>ATMOS Energy</td>
<td>Arlington, Texas, USA</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>E. Girouard</td>
<td>Emcara Gas Development</td>
<td>Guelph, Ontario, Canada</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>B. Grote</td>
<td>Swagelok Company</td>
<td>Solon, Ohio, USA</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>P. Horacek</td>
<td>Powertech Labs Inc</td>
<td>Surrey, British Columbia, Canada</td>
<td>Producer Interest</td>
</tr>
<tr>
<td>D.B. Horne</td>
<td>Clean Vehicle Education Foundation</td>
<td>Acworth, Georgia, USA</td>
<td>General Interest</td>
</tr>
</tbody>
</table>
J.F. Jordan
Agility Fuel Systems,
Cook, Minnesota, USA
Category: User Interest

S. Katz
S. Katz and Associates Inc.,
North Vancouver, British Columbia, Canada
Category: General Interest

M. Leavitt
Quantum Fuel Systems Technologies Worldwide, Inc.,
Irvine, California, USA
Category: Producer Interest

N.L. Newhouse
Hexagon Lincoln Inc.,
Lincoln, Nebraska, USA
Category: Producer Interest

S. Quong
Quong & Associates, Inc,
San Francisco, California, USA
Category: General Interest

V.R. Sage
General Motors of Canada Limited,
Oshawa, Ontario, Canada
Category: User Interest

M. Spears
AVF LLC,
Twinsburg, Ohio, USA
Category: Producer Interest

R. Stephenson
Motor Vehicle Fire Research Institute,
La Canada, California, USA
Associate

T.A. Williams
American Gas Association Inc.,
Washington, D.C., USA
Category: Producer Interest

B. Yeggy
Hexagon Lincoln Inc.,
Lincoln, Nebraska, USA

J. Cairns
CSA Group,
Cleveland, Ohio, USA
Project Manager
Technical Subcommittee on Standards for Compressed Hydrogen Powered Industrial Truck On-Board Fuel Storage and Handling Components

A. Harris
Air Liquide,
Houston, Texas, USA
Chair

C. Minas
Plug Power LLC,
Latham, New York, USA
Vice-Chair

R. Boyd
Boyd Hydrogen LLC,
Oakland, California, USA

J.P. Cohen
Air Products and Chemicals Inc.,
Allentown, Pennsylvania, USA

J. De Clippeleir
Covess NV,
Hasselt, Belgium

J.B. Dimmick
Clean Vehicle Education Foundation,
Waukesha, Wisconsin, USA

J. Eihusen
Hexagon Lincoln Inc.,
Lincoln, Nebraska, USA

S. Goyette
Nuvera Fuel Cells, Inc.,
Billerica, Massachusetts, USA

K. Hall
Fuel Cell & Hydrogen Energy Association,
Washington, District of Columbia, USA

J.F. Jordan
Agility Fuel Systems,
Cook, Minnesota, USA

T. Joseph
Bethlehem Hydrogen Inc,
Northampton, Pennsylvania, USA

S. Katz
S. Katz and Associates Inc.,
North Vancouver, British Columbia
Associate

March 2015
© 2015 Canadian Standards Association
Preface

This is the first edition of CSA HPIT 1, Compressed hydrogen powered industrial truck on-board fuel storage and handling components.

This Standard was prepared by the HPIT 1 Technical Subcommittee on Standards for Compressed Hydrogen Powered Industrial Truck On-Board Fuel Storage and Handling Components, under the jurisdiction of the Joint Automotive Technical Committee, and had been formally approved by the Technical Committee.

Notes:
1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
3) This publication was developed by consensus, which is defined by CSA Policy governing standardization – Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity.” It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this publication.
4) This Standard is subject to periodic review, and suggestions for their improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include “Proposal for change” in the subject line:
 a) Standard designation (number)
 b) relevant clause, table, and/or figure number;
 c) wording of the proposed change; and
 d) rationale for the change.
5) To submit a request for interpretation of this Standard, please send the following information to inquiries@csagroup.org and include “Request for interpretation” in the subject line:
 a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
 b) provide an explanation of circumstances surrounding the actual field condition; and
 c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.

Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.
1 Scope

1.1 This Standard establishes minimum requirements for the material, design, manufacture, and testing of newly produced compressed hydrogen gas fuel system components and serially produced, refillable Type HPIT 1 containers intended only for the storage of compressed hydrogen gas installed in powered industrial truck applications or other heavy duty industrial applications. The following are components covered under this Standard:

a) check valve;
b) manual valve;
c) manual container valve;
d) automatic valve;
e) pressure sensors and pressure gauges;
f) pressure regulator;
g) pressure relief device;
h) excess flow valve;
i) rigid fuel line;
j) flexible fuel line;
k) filter;
l) fittings;
m) discharge line closures; and
n) containers – HPIT Types 1, 2, 3, and 4.

The construction of compressed hydrogen gas fuel system components and containers is covered under Clause 4.

The performance of compressed hydrogen gas fuel system components and containers is covered under Clause 6.

1.2 This Standard applies to containers permanently attached to the powered industrial truck and intended only for on-board refueling from a dispenser.

1.3 This Standard does not apply to the following:
a) stationary gas engines;
b) containers that can be removed from the powered industrial truck, refilled, and reattached; and
c) reseating or resealing pressure relief devices.