Code for digester gas, landfill gas, and biogas generation and utilization
Legal Notice for Standards

Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA Group; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Standards Update Service

CSA/ANSI B149.6:20
January 2020

Title: Code for digester gas, landfill gas, and biogas generation and utilization

To register for e-mail notification about any updates to this publication
• go to store.csagroup.org
• click on Product Updates

The List ID that you will need to register for updates to this publication is 2427262.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group’s policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.
Canadian Standards Association (operating as "CSA Group"), under whose auspices this National Standard has been produced, was chartered in 1919 and accredited by the Standards Council of Canada to the National Standards system in 1973. It is a not-for-profit, nonstatutory, voluntary membership association engaged in standards development and certification activities.

CSA Group standards reflect a national consensus of producers and users — including manufacturers, consumers, retailers, unions and professional organizations, and governmental agencies. The standards are used widely by industry and commerce and often adopted by municipal, provincial, and federal governments in their regulations, particularly in the fields of health, safety, building and construction, and the environment.

Individuals, companies, and associations across Canada indicate their support for CSA Group’s standards development by volunteering their time and skills to Committee work and supporting CSA Group’s objectives through sustaining memberships. The more than 7000 committee volunteers and the 2000 sustaining memberships together form CSA Group’s total membership from which its Directors are chosen. Sustaining memberships represent a major source of income for CSA Group’s standards development activities.

CSA Group offers certification and testing services in support of and as an extension to its standards development activities. To ensure the integrity of its certification process, CSA Group regularly and continually audits and inspects products that bear the CSA Group Mark.

In addition to its head office and laboratory complex in Toronto, CSA Group has regional branch offices in major centres across Canada and inspection and testing agencies in eight countries. Since 1919, CSA Group has developed the necessary expertise to meet its corporate mission: CSA Group is an independent service organization whose mission is to provide an open and effective forum for activities facilitating the exchange of goods and services through the use of standards, certification and related services to meet national and international needs.

For further information on CSA Group services, write to CSA Group
178 Rexdale Boulevard
Toronto, Ontario, M9W 1R3
Canada

A National Standard of Canada is a standard developed by
a Standards Council of Canada (SCC) accredited Standards
Development Organization, in compliance with requirements and
guidance set out by SCC. More information on National Standards of
Canada can be found at www.scc.ca.

SCC is a Crown corporation within the portfolio of Innovation,
Science and Economic Development (ISED) Canada. With the goal of
enhancing Canada’s economic competitiveness and social well-
being, SCC leads and facilitates the development and use of national
and international standards. SCC also coordinates Canadian
participation in standards development, and identifies strategies to
advance Canadian standardization efforts.

Accreditation services are provided by SCC to various customers,
including product certifiers, testing laboratories, and standards
development organizations. A list of SCC programs and accredited
bodies is publicly available at www.scc.ca.

Standards Council of Canada
600-55 Metcalfe Street
Ottawa, Ontario, K1P 6L5
Canada

Cet cette Norme Nationale du Canada est disponible en versions française et anglaise.

Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users to judge its suitability for their particular purpose.

*A trademark of the Canadian Standards Association, operating as "CSA Group"
The Canadian Standards Association (operating as "CSA Group"), under whose auspices this National Standard has been produced, was chartered in 1919 and accredited by the Standards Council of Canada to the National Standards system in 1973. It is a not-for-profit, nonstatutory, voluntary membership association engaged in standards development and certification activities. CSA Group standards reflect a national consensus of producers and users including manufacturers, consumers, retailers, unions and professional organizations, and governmental agencies. The standards are used widely by industry and commerce and often adopted by municipal, provincial, and federal governments in their regulations, particularly in the fields of health, safety, building and construction, and the environment.

Individuals, companies, and associations across Canada indicate their support for CSA Group’s standards development by volunteering their time and skills to Committee work and supporting CSA Groups objectives through sustaining memberships. The more than 7000 committee volunteers and the 2000 sustaining memberships together form CSA Group’s total membership from which its Directors are chosen. Sustaining memberships represent a major source of income for CSA Groups standards development activities.

CSA Group offers certification and testing services in support of and as an extension to its standards development activities. To ensure the integrity of its certification process, CSA Group regularly and continually audits and inspects products that bear the CSA Group Mark.

In addition to its head office and laboratory complex in Toronto, CSA Group has regional branch offices in major centres across Canada and inspection and testing agencies in eight countries. Since 1919, CSA Group has developed the necessary expertise to meet its corporate mission: CSA Group is an independent service organization whose mission is to provide an open and effective forum for activities facilitating the exchange of goods and services through the use of standards, certification and related services to meet national and international needs.

For further information on CSA Group services, write to CSA Group
178 Rexdale Boulevard, Toronto, Ontario,
Canada M9W 1R3

The American National Standards Institute (ANSI), Inc. is the nationally recognized coordinator of voluntary standards development in the United States through which voluntary organizations, representing virtually every technical discipline and every facet of trade and commerce, organized labor and consumer interests, establish and improve the some 10,000 national consensus standards currently approved as American National Standards.

ANSI provides that the interests of the public may have appropriate participation and representation in standardization activity, and cooperates with departments and agencies of U.S. Federal, state and local governments in achieving compatibility between government codes and standards and the voluntary standards of industry and commerce.

ANSI represents the interests of the United States in international nontreaty organizations such as the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). The Institute maintains close ties with regional organizations such as the Pacific Area Standards Congress (PASC) and the Pan American Standards Commission (COPANT). As such, ANSI coordinates the activities involved in the U.S. participation in these groups.

ANSI approval of standards is intended to verify that the principles of openness and due process have been followed in the approval procedure and that a consensus of those directly and materially affected by the standards has been achieved. ANSI coordination is intended to assist the voluntary system to ensure that national standards needs are identified and met with a set of standards that are without conflict or unnecessary duplication in their requirements.
National Standard of Canada
American National Standard

CSA/ANSI B149.6:20
Code for digester gas, landfill gas, and biogas generation and utilization

*A trademark of the Canadian Standards Association and CSA America Standards Inc., operating as "CSA Group"

Approved on October 15, 2019 by ANSI
Approved on December 2, 2019 by IGAC
Published in January 2020 by CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3

To purchase standards and related publications, visit our Online Store at store.csagroup.org or call toll-free 1-800-463-6727 or 416-747-4044.

ICS 13.030.40
ISBN 978-1-4883-2238-9

© 2020 Canadian Standards Association
All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
Contents

Interprovincial Gas Advisory Council (IGAC) 7

Technical Committee on Biogas Generation and Utilization 9

Preface 13

1 Scope 15
 1.1 General 15
 1.2 Summary 16
 1.3 Terminology 16
 1.4 Dual dimensions 16

2 Reference publications 16

3 Definitions and abbreviations 20
 3.1 Definitions 20
 3.2 Abbreviations 26

4 General requirements for digester gas systems 27
 4.1 Approval of appliances, accessories, components, and equipment 27
 4.2 Quality of work 27
 4.3 Personnel qualifications 27
 4.4 Control of sources of ignition 28
 4.5 Isolation of safety devices 28
 4.6 Existing equipment and materials 28
 4.7 Compliance with other Codes 28
 4.8 Prohibited practices for digester gas systems 29

5 Installation requirements for appliances and equipment on digester gas systems 30
 5.1 Check for suitability of use 30
 5.2 Appliance connections 30
 5.3 Accessibility 30
 5.4 Responsibilities of the installer 31
 5.5 Damaged and used appliances 31

6 Installation requirements for specific types of appliances and equipment on digester gas systems 31
 6.1 General 31
 6.2 Compressors 32
 6.2.1 General 32
 6.2.2 Compressor controls 32
 6.3 Boilers 33
 6.3.1 General 33
 6.3.2 Boiler stack vent 33
 6.4 Waste gas burner 33
 6.5 Stationary gas engines 34
 6.6 Incinerators 34
7 Air for combustion, venting, and ventilation in digester gas systems 35

8 Piping and tubing systems and fittings in digester gas systems 35
8.1 General 35
8.2 Material 36
8.3 Requirements for specific types of piping and fittings 36
8.3.1 Stainless steel pipe, tubing, and fittings 36
8.3.2 Plastic pipe and fittings 37
8.3.3 Copper tubing and fittings 38
8.4 Purging 38
8.5 Digester gas piping passing through walls and partitions 39
8.6 Buried piping 39
8.7 Gas piping identification 40
8.8 Manual shut-off valves upstream from the appliance valve train 41
8.9 Drip traps upstream from the appliance valve train 42
8.10 Digester gas instrumentation 43
8.11 Check valves upstream from the appliance valve train 43
8.12 Sediment traps upstream from the appliance valve train 43
8.13 Bleed vents 43
8.14 Gas pressure regulators upstream from the appliance valve train 44
8.15 Gas filters upstream from the appliance valve train 44

9 Digesters and gas storage tanks 45
9.1 Water seal skirt depth 45
9.2 Coatings or linings 45
9.3 Access holes 45
9.4 Gas draw-off 45
9.5 Gas mixing supply piping 46
9.6 Liquid overflow 46
9.7 Pressure/vacuum relieving on digesters 46
9.8 Digester gas storage containers 47
9.8.1 Tanks, cylinders, and spheres 47
9.8.2 Storage container installation 47
9.8.3 Pressure relieving on digester gas storage containers 47
9.9 Sludge holding tanks 48
9.10 Membrane gas holder 49

10 Building and building services for digester gas systems 52
10.1 Compressor rooms 52
10.2 Boiler rooms 52
10.3 Hazardous areas 52
10.4 Combustible gas detection equipment 54

11 Testing hazardous areas and digester gas systems 54
11.1 Tests for newly constructed digesters 54
11.2 Pressure testing for digesters 55
11.3 Vacuum tests 56
11.4 Testing after cleanout or digester modifications 56
11.5 Pressure testing for piping 57
11.6 Testing hazardous areas 57

12 Electrical requirements for digester gas systems 57

13 Operation and maintenance of digester gas systems 57
13.1 General 57
13.2 Corrosion of the piping system 58
13.3 Plans and records 58
13.4 Digester gas system maintenance 58
13.5 Maintenance of compressors and relief devices 59
13.6 Valve maintenance 59
13.7 Pressure/vacuum-relief valve protective housing maintenance 59
13.8 Drip trap maintenance (continuous-flow type) 59
13.9 Gas detection system maintenance 60
13.10 Ventilation systems for hazardous areas 60
13.11 Monitoring and testing for flexible membrane gas holders 60

14 General requirements for landfill gas systems 61
14.1 Approval of appliances, accessories, components, and equipment 61
14.2 Quality of work 61
14.3 Personnel qualifications 61
14.4 Control of sources of ignition 62
14.5 Isolation of safety devices 62
14.6 Existing equipment and materials 62
14.7 Compliance with other Codes 62
14.8 Prohibited practices for landfill gas systems 63

15 Installation requirements for appliances and equipment on landfill gas systems 63
15.1 Check for suitability of use 63
15.2 Appliance connections 64
15.3 Accessibility 64
15.4 Responsibilities of the installer 64
15.5 Damaged and used appliances 65

16 Installation requirements for specific types of appliances and equipment on landfill gas systems 65
16.1 General 65
16.2 Blowers 65
16.2.1 General 65
16.2.2 Blower controls 66
16.3 Boilers 66
16.3.1 General 66
16.3.2 Boiler stack 66
16.4 Waste gas burner 67
16.5 Stationary gas engines 67
16.6 Incinerators 68

17 Air for combustion, venting, and ventilation in landfill gas systems 68

18 Piping and tubing systems and fittings in landfill gas systems 69
18.1 General 69
18.2 Material 69
18.3 Requirements for specific types of piping and fittings 70
18.3.1 Stainless steel pipe, tubing, and fittings 70
18.3.2 Plastic pipe and fittings 70
18.4 Purging 71
18.5 Landfill gas piping passing through walls and partitions 72
18.6 Buried piping 73
18.7 Gas piping identification 73
18.8 Manual shut-off valves upstream from the appliance valve train 74
18.9 Drip traps upstream from the appliance valve train 74
18.10 Landfill gas instrumentation 75
18.11 Check valves upstream from the appliance valve train 76
18.12 Sediment traps upstream from the appliance valve train 76
18.13 Bleed vents 76
18.14 Gas pressure regulators upstream from the appliance valve train 77
18.15 Gas filters upstream from the appliance valve train 77

19 Building and building services for landfill gas systems 77
19.1 Blower rooms 77
19.2 Boiler rooms 78
19.3 Hazardous areas 78
19.4 Combustible gas detection equipment 79

20 Testing hazardous areas and landfill gas systems 80
20.1 Pressure testing for piping 80
20.2 Testing hazardous areas 80

21 Electrical requirements for landfill gas systems 80

22 Operation and maintenance of landfill gas systems 80
22.1 General 80
22.2 Corrosion of the piping system 81
22.3 Plans and records 81
22.4 Landfill gas system maintenance 81
22.5 Maintenance of blowers and relief devices 82
22.6 Valve maintenance 82
22.7 Drip trap maintenance (continuous-flow type) 82
22.8 Gas detection system maintenance 83
22.9 Ventilation systems for hazardous areas 83

23 General requirements for biogas systems 84
23.1 Approval of appliances, accessories, components, and equipment 84
23.2 Quality of work 84
23.3 Personnel qualifications 84
23.4 Control of sources of ignition 85
23.5 Isolation of safety devices 85
23.6 Existing equipment and materials 85
23.7 Compliance with other Codes 85
23.8 Prohibited practices for biogas systems 86

24 Installation requirements for appliances and equipment on biogas systems 87
24.1 Check for suitability of use 87
24.2 Appliance connections 87
24.3 Accessibility 87
24.4 Responsibilities of the installer 87
24.5 Damaged and used appliances 88

25 Installation requirements for specific types of appliances and equipment on biogas systems 88
25.1 General 88
25.2 Compressors 88
25.2.1 General 88
25.2.2 Compressor controls 89
25.3 Boilers 90
25.3.1 General 90
25.3.2 Boiler stack vent 90
25.4 Waste gas burner 90
25.5 Stationary gas engines 91
25.6 Incinerators 91

26 Air for combustion, venting, and ventilation in biogas systems 91

27 Piping and tubing systems and fittings in biogas systems 92
27.1 General 92
27.2 Material 92
27.3 Requirements for specific types of piping and fittings 93
27.3.1 Stainless steel pipe, tubing, and fittings 93
27.3.2 Plastic pipe and fittings 94
27.3.3 Copper tubing and fittings 95
27.4 Purging 95
27.5 Biogas piping passing through walls and partitions 96
27.6 Buried piping 96
27.7 Gas piping identification 97
27.8 Manual shut-off valves upstream from the appliance valve train 98
27.9 Drip traps upstream from the appliance valve train 99
27.10 Biogas instrumentation 100
27.11 Check valves 100
27.12 Sediment traps upstream from the appliance valve train 100
27.13 Bleed vents 101
27.14 Gas pressure regulators 101
27.15 Gas filters 101

28 Digesters and gas storage tanks 102
28.1 Water seal skirt depth 102
28.2 Coatings or linings 102
28.3 Access holes 102
28.4 Gas draw-off 103
28.5 Gas mixing supply piping 103
28.6 Liquid overflow 103
28.7 Pressure/vacuum relieving on digesters 103
28.8 Biogas storage containers 104
28.8.1 Tanks, cylinders, and spheres 104
28.8.2 Storage container installation 104
28.8.3 Pressure relieving on biogas storage containers 104
28.9 Digestate holding tanks 105
28.10 Membrane gasholder 106

29 Building and building services for biogas systems 109
29.1 Compressor rooms 109
29.2 Boiler rooms 109
29.3 Hazardous areas 110
29.4 Combustible gas detection equipment 111

30 Testing hazardous areas and biogas systems 111
30.1 Tests for newly constructed digesters 111
30.2 Pressure testing for digesters 112
30.3 Vacuum tests 113
30.4 Testing after cleanout or digester modifications 113
30.5 Pressure testing for piping 114
30.6 Testing hazardous areas 114

31 Electrical requirements for biogas systems 114

32 Operation and maintenance of biogas systems 114
32.1 General 114
32.2 Corrosion of the piping system 115
32.3 Plans and records 115
32.4 Biogas system maintenance 116
32.5 Maintenance of compressors and relief devices 116
32.6 Valve maintenance 116
32.7 Pressure/vacuum relief valve protective housing maintenance 117
32.8 Drip trap maintenance (continuous-flow type) 117
32.9 Gas detection system maintenance 117
32.10 Ventilation systems for hazardous areas 117

Annex A (informative) — Leakage and vacuum test methods for digesters 118
Annex B (informative) — Schematics for recommended valving arrangements for digester gas systems 121
Annex C (informative) — Schematics for recommended valving arrangements for landfill gas systems 127
Annex D (informative) — Valve train requirements for specific types of appliances and equipment on digester gas, landfill gas, and biogas systems 135
Annex E (informative) — Carbon steel limit in fuel gas piping 143
Annex F (informative) — Recommended requirements for safety shutoff valves greater than 200 mm 144
Annex G (informative) — Summary 145
Interprovincial Gas Advisory Council (IGAC)

J. R. Marshall
Technical Standards & Safety Authority (TSSA),
Toronto, Ontario, Canada
Category: Regulatory Authority

M. E. Davidson
Province of New Brunswick Dept of Public Safety,
Fredericton, New Brunswick, Canada
Category: Regulatory Authority

J. Renaud
Régie du bâtiment du Québec,
Montréal, Québec, Canada
Category: Regulatory Authority

A. Ali
SaskPower,
Regina, Saskatchewan, Canada
Category: Regulatory Authority

Armstrong
Office of the Fire Commissioner Inspections and Technical Services,
Winnipeg, Manitoba, Canada
Alternate

D. A. Balcha
Manitoba, Office of the Fire Commissioner,
Winnipeg, Manitoba, Canada
Category: Regulatory Authority

R. Brousseau
Régie du Bâtiment du Québec,
Montréal, Québec, Canada
Alternate

P. Fowler
Dept of Labour and Advanced Education,
Dartmouth, Nova Scotia, Canada
Category: Regulatory Authority

Z. J. Fraczkowski
Technical Standards & Safety Authority (TSSA),
Toronto, Ontario, Canada
Alternate

S. Friedt
Government of Northwest Territories,
Yellowknife, Northwest Territories, Canada
Category: Regulatory Authority

S. Hauer
Yukon Government,
Whitehorse, Yukon Territory, Canada
Category: Regulatory Authority
D. N. Hird
SaskPower, Regina, Saskatchewan, Canada

J. Jachniak
ENEFEN Energy Efficiency Engineering Ltd., Leduc, Alberta, Canada

J. Ludgate
Government of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
Category: Regulatory Authority

S. C. Manning
Alberta Municipal Affairs Safety Services, Edmonton, Alberta, Canada
Category: Regulatory Authority

C. R. Valliere
Alberta Municipal Affairs Safety Services, Edmonton, Alberta, Canada
Alternate

M. A. Wani
Government of Nunavut Dept of Community & Government Svcs, Iqaluit, Nunavut, Canada
Category: Regulatory Authority

B. Zinn
Technical Safety BC, Coquitlam, British Columbia, Canada
Category: Regulatory Authority
Technical Committee on Biogas Generation and Utilization

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Category</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. J. Carlisle</td>
<td>Karl Dungs Inc., Blaine, Minnesota, USA</td>
<td>Producer Interest</td>
<td>Chair</td>
</tr>
<tr>
<td>A. Ali</td>
<td>SaskPower, Regina, Saskatchewan, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>C. Anglin</td>
<td>DTE Biomass Energy, Ann Arbor, Michigan, USA</td>
<td>User Interest</td>
<td></td>
</tr>
<tr>
<td>P. A. Baker</td>
<td>Maxitrol Company, Port Dover, Ontario, Canada</td>
<td>Producer Interest</td>
<td></td>
</tr>
<tr>
<td>D. A. Balcha</td>
<td>Manitoba, Office of the Fire Commissioner, Winnipeg, Manitoba, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. Brewer</td>
<td>CHFour Biogas Inc, Manotick, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>M. Bruce</td>
<td>Ameresco, Portland, Maine, USA</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>V. Cherniak</td>
<td>QPS Evaluation Services Inc., Toronto, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>M. E. Davidson</td>
<td>Province of New Brunswick Dept of Public Safety, Fredericton, New Brunswick, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>M. Dugan</td>
<td>Comcor Environmental Limited, Cambridge, Ontario, Canada</td>
<td>User Interest</td>
<td></td>
</tr>
<tr>
<td>M. Evans</td>
<td>CSA Group, Toronto, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>T. Evans</td>
<td>Underwriters Laboratories Inc., Toronto, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Category</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>N. Farahani</td>
<td>QPS Evaluation Services Inc., Toronto, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>P. Fowler</td>
<td>Dept of Labour and Advanced Education, Dartmouth, Nova Scotia, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>Z. J. Fraczkowski</td>
<td>Technical Standards & Safety Authority (TSSA), Toronto, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>K. Fries</td>
<td>CH2M HILL, Calgary, Alberta, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. Groman</td>
<td>Varec Biogas, Cypress, California, USA</td>
<td>Category: Producer Interest</td>
<td></td>
</tr>
<tr>
<td>N. Hall</td>
<td>Ameresco, Portland, Maine, USA</td>
<td>Category: User Interest</td>
<td></td>
</tr>
<tr>
<td>N. Hendry</td>
<td>Stonecrest Engineering / Faromor CNG Corp., Shakespeare, Ontario, Canada</td>
<td>Category: Producer Interest</td>
<td></td>
</tr>
<tr>
<td>V. Hilborn</td>
<td>Ontario Ministry of Agriculture and Food, London, Ontario, Canada</td>
<td>Category: Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>D. N. Hird</td>
<td>SaskPower, Regina, Saskatchewan, Canada</td>
<td>Category: Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>J. Jachniak</td>
<td>ENEFEN Energy Efficiency Engineering Ltd., Leduc, Alberta, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>E. Jenson</td>
<td>Alberta Innovates Technology Futures, Vegreville, Alberta, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>R. Kurian</td>
<td>Black & Veatch, Thornhill, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>C. Lashek</td>
<td>Manitoba, Office of the Fire Commissioner, Winnipeg, Manitoba, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Category</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>A. Le Régent</td>
<td>Canadian Group for Approval inc., Blainville, Québec, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. Ludgate</td>
<td>Government of Prince Edward Island, Souris, Prince Edward Island, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>S. C. Manning</td>
<td>Alberta Municipal Affairs Safety Services, Edmonton, Alberta, Canada</td>
<td>Category: Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>J. Melling</td>
<td>SaskPower, Saskatoon, Saskatchewan, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>R. Milligan</td>
<td>Technical Safety BC, Victoria, British Columbia, Canada</td>
<td>Category: Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>R. J. Mohanlall</td>
<td>JSM Controls Inc., Ajax, Ontario, Canada</td>
<td>Category: Producer Interest</td>
<td></td>
</tr>
<tr>
<td>N. Nasiri</td>
<td>Technical Standards and Safety Authority (TSSA), Toronto, Ontario, Canada</td>
<td>Category: Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>D. Persson</td>
<td>Protego USA Inc., Charleston, South Carolina, USA</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. Renaud</td>
<td>Régie du bâtiment du Québec, Montréal, Québec, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>T. Sauvé</td>
<td>Ontario Ministry Agriculture Food and Rural Affairs (OMAFRA), Alfred, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>M. Scrimgeour</td>
<td>SCS Engineers, Valley Cottage, New York, USA</td>
<td>Category: General Interest</td>
<td></td>
</tr>
<tr>
<td>P. Serfass</td>
<td>American Biogas Council, Washington, District of Columbia, USA</td>
<td>Category: General Interest</td>
<td></td>
</tr>
<tr>
<td>W. A. Simpson</td>
<td>North American Standards Assessment Corp., Sherwood Park, Alberta, Canada</td>
<td>Category: General Interest</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Company</td>
<td>Category</td>
<td>Location</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>J. A. Slade</td>
<td>R.V. Anderson Associates Limited, Toronto, Ontario, Canada</td>
<td>General Interest</td>
<td></td>
</tr>
<tr>
<td>S. B. Smith</td>
<td>Aria Energy, Gilbert, Arizona, USA</td>
<td>User Interest</td>
<td></td>
</tr>
<tr>
<td>F. Szukits</td>
<td>Westech Industrial Ltd, Burlington, Ontario, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>C. R. Valliere</td>
<td>Alberta Municipal Affairs Safety Services, Edmonton, Alberta, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. C. Williams</td>
<td>DTE Biomass Energy, Ann Arbor, Michigan, USA</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>B. Wyatt</td>
<td>Technical Safety BC, Kelowna, British Columbia, Canada</td>
<td>Regulatory Authority</td>
<td></td>
</tr>
<tr>
<td>M. Yamada</td>
<td>AECOM, Edmonton, Alberta, Canada</td>
<td>General Interest</td>
<td></td>
</tr>
<tr>
<td>B. Zinn</td>
<td>Technical Safety BC, Coquitlam, British Columbia, Canada</td>
<td>Non-voting</td>
<td></td>
</tr>
<tr>
<td>J. Vulovic</td>
<td>CSA Group, Toronto, Ontario, Canada</td>
<td>Project Manager</td>
<td></td>
</tr>
</tbody>
</table>
Preface

This is the second edition of CSA/ANSI B149.6, *Code for digester gas, landfill gas, and biogas generation and utilization*. It supersedes the previous edition published in 2015.

The major changes to this edition include the following:

- The Scope was amended to clarify code coverage and exclusions.
- Several definitions were added, e.g., qualified personnel, relief device, safe location (for venting of gas), and valve proving system (VPS).
- Several definitions were clarified, e.g., biogas (removed the heating content reference), hazardous area (harmonized with applicable codes), sludge holding tank, stand-alone membrane gasholder, tank-mounted membrane gasholders, and test firing (firing valve).
- Compliance with the requirements of this Code for the installation at landfills upstream of the main inlet valve on the vacuum side of the blower has been removed from the scope of this Code.
- Flexible metallic hose was allowed to be used to connect piping to other than appliances.
- The requirement for a lock-up positive shut-off pressure regulator upstream of an appliance valve train was removed from Code.
- The requirement for a flame arrester upstream of the relief valve on a gas storage container that is designed to store gas at a pressure above 100 kPag (14.5 psig) has been removed.
- Examples for hazardous area were expanded to include odour control, equipment, components open-type gas compressors, or blowers.
- Requirement of having an automatic safety shut-off valve certified to ANSI Z21.21/CSA 6.5 and marked C/I to shut-off the landfill gas supply to a waste gas burner that is not equipped with safety shut-off valve(s) was added to the Code.
- Landfill pipe slope percentage was removed from the Code.
- Testing method for membrane gasholders used in biogas installation has been modified.
- Some of the revisions in Annexes include revised requirements for pressure test point (Clause D.2.8), manual shutoff valves (Clause D.2.11.1), and valve proving system (Clause D.2.16), clarified requirements when a test firing valve (Clause D.2.11.9) or a check valve (Clause D.3.4) might not be required, etc.

This Code was prepared by the Technical Committee on Biogas Generation and Utilization, under the jurisdiction of the Strategic Steering Committee on Fuel and Appliances, and has been formally approved by the Technical Committee. This Code has also been formally approved by the Interprovincial Gas Advisory Council.

This Code has been developed in compliance with Standards Council of Canada requirements for National Standards of Canada. It has been published as a National Standard of Canada by CSA Group.

This Code has been approved by the American National Standards Institute (ANSI) as an American National Standard.

Notes:

1) *Use of the singular does not exclude the plural (and vice versa) when the sense allows.*

2) *Although the intended primary application of this Code is stated in its Scope, it is important to note that it remains the responsibility of the users of the Code to judge its suitability for their particular purpose.*

3) *This Code was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this Code.*
4) To submit a request for interpretation of this Code, please send the following information to inquiries@csagroup.org and include “Request for interpretation” in the subject line:
 a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
 b) provide an explanation of circumstances surrounding the actual field condition; and
 c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.

Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.

5) This Code is subject to review within five years from the date of publication. Suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include “Proposal for change” in the subject line:
 a) Standard designation (number);
 b) relevant clause, table, and/or figure number;
 c) wording of the proposed change; and
 d) rationale for the change.
1 Scope

1.1 General

1.1.1
This Code applies to the installation of systems for the production, handling, storage, and utilization of digester gas in newly constructed wastewater treatment plants, as well as additions to and upgrading of existing systems.

1.1.2
This Code applies to the installation of systems for the production, handling, and utilization of landfill gas in newly constructed landfill gas systems, as well as additions to and upgrading of existing systems and temporary systems.

1.1.3
This Code does not apply to any infrastructure of a landfill upstream of the main inlet valve on the vacuum side of the blower.

1.1.4
This Code applies to the installation of systems for the production, handling, storage, and utilization of biogas in newly constructed biogas systems, as well as additions to and upgrading of existing systems.

1.1.5
This Code applies to piping systems in which the maximum operating pressures for piping used in digester systems, landfill gas systems, or biogas systems do not exceed 860 kPag (125 psig) for piping installed outdoors or 450 kPag (65 psig) for piping installed indoors.

1.1.6
This Code applies to the safety aspects of the operation and maintenance for handling, storage, and utilization of digester gas in wastewater treatment plants or landfill gas at landfill sites or biogas in biogas systems.

Note: This Code does not apply to substrate storage, long-term digestate storage, or pilot scale and research digesters in biogas systems.

1.1.7
This Code applies to existing digester gas and landfill gas systems where, in the opinion of the authority having jurisdiction, a hazard or potential hazard exists.