Electrostatic Discharge Association (ESDA) standards and publications are designed to serve the public interest by eliminating misunderstandings between manufacturers and purchasers, facilitating the interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining the proper product for his particular needs. The existence of such standards and publications shall not in any respect preclude any member or non-member of the Association from manufacturing or selling products not conforming to such standards and publications. Nor shall the fact that a standard or publication that is published by the Association preclude its voluntary use by non-members of the Association, whether the document is to be used either domestically or internationally. Recommended standards and publications are adopted by the ESDA in accordance with the ANSI Patent policy.

Interpretation of ESDA Standards: The interpretation of standards in-so-far as it may relate to a specific product or manufacturer is a proper matter for the individual company concerned and cannot be undertaken by any person acting for the ESDA. The ESDA Standards Chairman may make comments limited to an explanation or clarification of the technical language or provisions in a standard, but not related to its application to specific products and manufacturers. No other person is authorized to comment on behalf of the ESDA on any ESDA Standard.

THE CONTENTS OF ESDA'S STANDARDS AND PUBLICATIONS ARE PROVIDED "AS-IS," AND ESDA MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED, OF ANY KIND, WITH RESPECT TO SUCH CONTENTS. ESDA DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE, AND NONINFRINGEMENT.

ESDA STANDARDS AND PUBLICATIONS ARE CONSIDERED TECHNICALLY SOUND AT THE TIME THEY ARE APPROVED FOR PUBLICATION. THEY ARE NOT A SUBSTITUTE FOR A PRODUCT SELLERS' OR USERS' OWN JUDGEMENT WITH RESPECT TO ANY PARTICULAR PRODUCT DISCUSSED, AND ESDA DOES NOT UNDERTAKE TO GUARANTEE THE PERFORMANCE OF ANY INDIVIDUAL MANUFACTURERS' PRODUCTS BY VIRTUE OF SUCH STANDARDS OR PUBLICATIONS. THUS, ESDA EXPRESSLY DISCLAIMS ANY RESPONSIBILITY FOR DAMAGES ARISING FROM THE USE, APPLICATION, OR RELIANCE BY OTHERS ON THE INFORMATION CONTAINED IN THESE STANDARDS OR PUBLICATIONS.

NEITHER ESDA, NOR ITS MEMBERS, OFFICERS, EMPLOYEES OR OTHER REPRESENTATIVES WILL BE LIABLE FOR DAMAGES ARISING OUT OF, OR IN CONNECTION WITH, THE USE OR MISUSE OF ESDA STANDARDS OR PUBLICATIONS, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. THIS IS A COMPREHENSIVE LIMITATION OF LIABILITY THAT APPLIES TO ALL DAMAGES OF ANY KIND, INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, INCOME OR PROFIT, LOSS OF OR DAMAGE TO PROPERTY, AND CLAIMS OF THIRD PARTIES.
FOREWORD

This document defines a method for pulse testing to evaluate the voltage-current response of the component under test. This technique is known as transmission line pulse (TLP) testing. Interest in TLP testing is growing rapidly in the testing of electronic components in the semiconductor industry. TLP testing techniques are being used for semiconductor process development, device and circuit design. This technique or practice is being utilized on products in both wafer level and packaged environments. TLP testing is used as an ESD characterization tool to obtain voltage-current pulse characterization parameters, failure levels, and ESD metrics. The TLP technique is being used today as a standard measurement for ESD devices. The TLP system to the ESD engineer is becoming a tool as critical as the “parameter analyzer” is to the semiconductor engineer.

The majority of TLP systems are designed by engineers in a laboratory environment. A number of commercial TLP systems have been marketed in the industry. Hence, it is clear a TLP specification was needed for the TLP vendors, semiconductor industry and product customers to be able to make valid data comparisons. With the usage of TLP data for ESD characterization, technology benchmarking, and product quality evaluation, there is a growing need to have standard methodologies, failure criteria, and means of reporting to allow dialogue between semiconductor suppliers, vendors, and product customers.

This document defines the standard test method used today in the semiconductor industry for TLP testing method and techniques in both industrial and academic institutions. (This document is intended to be used by electrical technicians, electrical engineers, semiconductor process and device engineers, ESD reliability and quality engineers, and circuit designers.) This document covers standard TLP (pulse width in the order of 100 ns). Other TLP variants may be covered in other documents.

The context of this document is the application of TLP techniques for the electrical characterization of semiconductor components. These semiconductor components can be single devices, a plurality of devices, integrated circuits, or semiconductor chips. This methodology is relevant to both active and passive elements. This test method is applicable to diodes, MOSFET devices, bipolar transistors, resistors, capacitors, inductors, contacts, vias, wire interconnects, and related components.

This document was originally designated ANSI/ESD SP5.5.1-2004, and approved on February 22, 2004. ANSI/ESD STM5.5.1-2008 was a revision and re-designation of ANSI/ESD SP5.5.1-2004 and was approved on February 24, 2008. ANSI/ESD STM5.5.1-2014 is a revision of ANSI/ESD STM5.5.1-2008 and was approved on August 26, 2014.

1 ESD Association Standard Test Method (STM): A definitive procedure for the identification, measurement and evaluation of one or more qualities, characteristics, or properties of a material, product, system, or process that yield a reproducible test results.
At the time ANSI/ESD STM5.5.1-2014 was prepared, the 5.5 (TLP) Device Testing Subcommittee had the following members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theo Smedes</td>
<td>NXP Semiconductors</td>
</tr>
<tr>
<td>Robert Ashton</td>
<td>ON Semiconductor</td>
</tr>
<tr>
<td>Jon Barth</td>
<td>Barth Electronics, Inc.</td>
</tr>
<tr>
<td>Lorenzo Cerati</td>
<td>STMicroelectronics</td>
</tr>
<tr>
<td>Marcel Dekker</td>
<td>MASER Engineering</td>
</tr>
<tr>
<td>Reinhold Gaertner</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td>Horst Gieser</td>
<td>Fraunhofer EMFT</td>
</tr>
<tr>
<td>Vaughn Gross</td>
<td>Green Mountain ESD Labs, Inc.</td>
</tr>
<tr>
<td>Evan Grund</td>
<td>Grund Technical Solutions, LLC</td>
</tr>
<tr>
<td>Leo G. Henry</td>
<td>ESDTLP Consultants</td>
</tr>
<tr>
<td>Timothy Maloney</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Thomas Meuse</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Paul Phillips</td>
<td>Phasix ESD</td>
</tr>
<tr>
<td>Bill Reynolds</td>
<td>IBM</td>
</tr>
<tr>
<td>Alan Righter</td>
<td>Analog Devices</td>
</tr>
<tr>
<td>Masanori Sawada</td>
<td>HANWA Electronic Ind. Co., Ltd.</td>
</tr>
<tr>
<td>Wolfgang Stadler</td>
<td>Intel Mobile Communications</td>
</tr>
<tr>
<td>Steven H. Voldman</td>
<td>Steven H. Voldman LLC</td>
</tr>
<tr>
<td>Scott Ward</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>Terry Welsher</td>
<td>TAS Rep</td>
</tr>
<tr>
<td></td>
<td>Dangelmayer Associates</td>
</tr>
</tbody>
</table>

The following individuals contributed significantly to the development of ANSI/ESD STM5.5.1-2014:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Chaine</td>
<td>Micron Technology, Inc.</td>
</tr>
<tr>
<td>Kathleen Muhonen</td>
<td>RF Micro Devices</td>
</tr>
</tbody>
</table>
At the time ANSI/ESD STM5.5.1-2008 was prepared, the 5.5 (TLP) Device Testing Subcommittee had the following members:

- Steven H. Voldman, Chair
 Dr. Steven H. Voldman, LLC
- Robert Ashton
 ON Semiconductor
- Jon Barth
 Barth Electronics, Inc.
- Michael Chaine
 Micron Technology, Inc.
- Horst Gieser
 Fraunhofer IZM
- Vaughn Gross
 Green Mountain ESD Labs, Inc.
- Evan Grund
 Grund Technical Solutions, Inc.
- Leo G. Henry
 ESD TLP Consultants
- Dimitri Linten
 IMEC
- Timothy Maloney
 Intel Corporation
- Thomas Meuse
 Thermo Fisher Scientific
- Doug Miller
 Sandia National Laboratories
- Kyungjin Min
 Global Technology Leader, Inc.
- Kathleen Muhonen
 Penn State University
- Ravindra Narayan
 LSI Logic Corp.
- Nathaniel Peachey
 RF Micro Devices
- Alan Righter
 Analog Devices
- Wolfgang Stadler
 Infineon Technologies
- Scott Ward
 Texas Instruments

At the time ANSI/ESD SP5.5.1-2004 was prepared, the 5.5 (TLP) Device Testing Subcommittee had the following members:

- Steven H. Voldman, Chair
 IBM Microelectronics
- Robert Ashton
 White Mountain Labs
- Jon Barth
 Barth Electronics, Inc.
- Joseph Bernier
 Intersil Corporation
- Mike Chaine
 Micron Technology, Inc.
- Horst Gieser
 Fraunhofer IZM
- Evan Grund
 Oryx Instruments
- Leo G. Henry
 ESD TLP Consultants/Testing
- Mike Hopkins
 Thermo Electron Corporation
- Mark Kelly
 Delphi Electronics & Safety
- Natarajan Mahadeva Iyer
 IMEC
- Mike Hopkins
 Thermo Electron Corporation
- Tim Maloney
 Intel Corporation
- Tom Meuse
 Thermo Electron Corporation
- Larry Ting
 Texas Instruments
- Gary Weiss
 Agere Systems
- Eugene Worley
 Conexant Systems
The following individuals contributed significantly to the development of ANSI/ESD SP5.5.1-2004:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Bennett</td>
<td>Thermo Electron Corporation</td>
</tr>
<tr>
<td>Tilo Brodbeck</td>
<td>Infineon Technologies</td>
</tr>
<tr>
<td>Charvaka Duvvury</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>Marti Farris</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Vaughn Gross</td>
<td>Green Mountain ESD Labs, Inc.</td>
</tr>
<tr>
<td>Brenda McCaffrey</td>
<td>White Mountain Labs</td>
</tr>
<tr>
<td>Hugh Hyatt</td>
<td>Hyger Physics, Inc.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 PURPOSE AND SCOPE ... 1
 1.1 PURPOSE ... 1
 1.2 SCOPE ... 1

2.0 REFERENCED PUBLICATIONS .. 1

3.0 DEFINITIONS ... 1

4.0 PERSONNEL SAFETY ... 3

5.0 EQUIPMENT .. 3
 5.1 OSCILLOSCOPE ... 3
 5.2 VOLTAGE PROBE ... 3
 5.3 CURRENT PROBE .. 3
 5.4 TRANSMISSION LINE .. 3
 5.5 HIGH VOLTAGE POWER SUPPLY .. 4
 5.6 HIGH VOLTAGE SWITCH ... 4
 5.7 ATTENUATOR .. 4
 5.8 RISE TIME FILTER ... 4

6.0 TLP WAVEFORM PARAMETERS ... 5
 6.1 PULSE WIDTH .. 5
 6.2 RISE TIME .. 5
 6.3 FALL TIME ... 5
 6.4 PEAK CURRENT OVERSHOOT .. 5
 6.5 CURRENT RINGING DURATION .. 5
 6.6 PEAK VOLTAGE OVERSHOOT ... 5
 6.7 VOLTAGE RINGING DURATION ... 5
 6.8 MEASUREMENT WINDOW ... 5

7.0 TEST REQUIREMENTS AND PROCEDURES ... 7
 7.1 ERROR CORRECTION AND CALIBRATION .. 7
 7.2 TESTER ERROR CORRECTION METHODOLOGY ... 7
 7.2.1 Short Circuit Error Correction Methodology .. 7
 7.2.2 Open Circuit Error Correction Methodology ... 7
 7.3 TESTER CALIBRATION METHODOLOGY .. 7
 7.3.1 Voltage Calibration Methodology .. 8
 7.3.2 Current Calibration Methodology .. 8
 7.4 TLP TEST PROCEDURE .. 8
ANNEXES

Annex A (Informative): TLP Design Guidelines .. 11
Annex B (Informative): Evaluation and Determination of Failure 18
Annex C (Informative): Verification Failures .. 20
Annex D (Informative): Revision History for ANSI/ESD STM5.5.1-2014 21

TABLES

Table 1: TLP Current and Voltage Pulse Parameters ... 4
Table 2: TLP Methodologies and Parameters ... 12

FIGURES

Figure 1: Typical TLP Plot Illustrating Several Parameters that can be Obtained from this Measurement .. 2
Figure 2: TLP Waveform Parameter Illustration for Pulse Width Rise Time and Fall Time .. 6
Figure 3: Illustration of Peak Current Overshoot .. 6
Figure 4: Illustration of Peak Voltage Overshoot .. 6
Figure 5: Flow Diagram for the TLP Component Test Procedure 9
Figure 6: Illustration of TLP Pulse Sequence .. 10
Figure 7: Current Source TLP .. 13
Figure 8: Time Domain Reflectometer (TDR) TLP .. 13
Figure 9: Time Domain Transmission (TDT) TLP .. 14
Figure 10: Time Domain Reflection and Transmission (TDRT) TLP 14
Figure 11: Kelvin Set-up ... 17
1.0 PURPOSE AND SCOPE

1.1 Purpose
The purpose of the document is to establish a methodology for both testing and reporting information associated with transmission line pulse (TLP) testing.

1.2 Scope
The scope and focus of this document pertains to TLP testing techniques of semiconductor components.

2.0 REFERENCED PUBLICATIONS
Unless otherwise specified, the following documents of the latest issue, revision or amendment, form a part of this standard to the extent specified herein:
- ESD ADV1.0, ESD Association Glossary of Terms
- ANSI/ESDA/JEDEC JS-001 – Human Body Model (HBM)
- ANSI/ESD S5.3.1 – Charged Device Model (CDM)

3.0 DEFINITIONS
The terms used in the body of this document are in accordance with the definitions found in ESD ADV1.0, ESD Association’s Glossary of Terms available for complimentary download at www.esda.org.
The terms defined in this section are specific to this document. Figure 1 illustrates these terms pictorially on a TLP I-V plot and leakage plot.
NOTE: These definitions may not be applicable to all devices.

- **V_A:** avalanche voltage or breakdown voltage. Voltage at which current through a reverse biased junction starts to increase significantly due to avalanche multiplication.
 NOTE: This does not apply to non-snapback devices – see Turn-on Voltage for diode stack clamps.

- **V_{t1}, I_{t1}:** trigger point. The voltage/current at which bipolar action starts in a snapback device.

- **V_{hold}, I_{hold}:** holding point. The voltage at the apparent lowest current after snapback. This point depends on the Device Under Test (DUT) and the source impedance of the measurement setup.

- **V_{on}:** turn-on voltage. The point at which the linear fit through the linear part of the TLP I-V curve after the holding point crosses the voltage axis.

- **R_{on}:** on-state resistance. The equivalent resistance of the slope (conductance G_{on}) of the linear fit through the linear part of the TLP I-V curve after the holding point.

- **V_{clamp}:** clamping voltage. DUT voltage at a given ESD current (I_{ESD}), in approximation:
 \[V_{\text{clamp}} = V_{\text{on}} + R_{\text{on}} \times I_{\text{ESD}}. \]

- **V_{t2}, I_{t2}:** 2nd breakdown point. The voltage/current at which the DUT characteristic shows a (second) snapback. This second snapback can also be the point at which the device shows destructive damage, typically seen as a large change in the evaluation measurement (often

2 ESD Association, 7900 Turin Road, Bldg. 3, Rome, NY 13440, Ph: 315-339-6937; FAX: 315-339-6793; www.esda.org