ANSI/ESDA/JEDEC JS-002-2018
Limited revision of ANSI/ESDA/JEDEC JS-002-2014

For Electrostatic Discharge Sensitivity Testing

Charged Device Model (CDM) - Device Level

Electrostatic Discharge Association
7900 Turin Road, Bldg. 3
Rome, NY 13440

JEDEC Solid State Technology Association
3103 North 10th Street
Arlington, VA 22201

An American National Standard
Approved December 17, 2018
ESDA/JEDEC Joint Standard for Electrostatic Discharge Sensitivity Testing -

Charged Device Model (CDM) - Device Level

Approved February 16, 2018
EOS/ESD Association, Inc. & JEDEC Solid State Technology Association
Electrostatic Discharge Association (ESDA) standards and publications are designed to serve the public interest by eliminating misunderstandings between manufacturers and purchasers, facilitating the interchangeability and improvement of products and assisting the purchaser in selecting and obtaining the proper product for his particular needs. The existence of such standards and publications shall not in any respect preclude any member or non-member of the Association from manufacturing or selling products not conforming to such standards and publications. Nor shall the fact that a standard or publication is published by the Association preclude its voluntary use by non-members of the Association whether the document is to be used either domestically or internationally. Recommended standards and publications are adopted by the ESDA in accordance with the ANSI Patent policy.

Interpretation of ESDA Standards: The interpretation of standards in-so-far as it may relate to a specific product or manufacturer is a proper matter for the individual company concerned and cannot be undertaken by any person acting for the ESDA. The ESDA Standards Chairman may make comments limited to an explanation or clarification of the technical language or provisions in a standard, but not related to its application to specific products and manufacturers. No other person is authorized to comment on behalf of the ESDA on any ESDA Standard.

THE CONTENTS OF ESDA’S STANDARDS AND PUBLICATIONS ARE PROVIDED “AS-IS,” AND ESDA MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED, OF ANY KIND WITH RESPECT TO SUCH CONTENTS. ESDA DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE AND NON-INFRINGEMENT.

ESDA STANDARDS AND PUBLICATIONS ARE CONSIDERED TECHNICALLY SOUND AT THE TIME THEY ARE APPROVED FOR PUBLICATION. THEY ARE NOT A SUBSTITUTE FOR A PRODUCT SELLER’S OR USER’S OWN JUDGEMENT WITH RESPECT TO ANY PARTICULAR PRODUCT DISCUSSED, AND ESDA DOES NOT UNDERTAKE TO GUARANTEE THE PERFORMANCE OF ANY INDIVIDUAL MANUFACTURERS’ PRODUCTS BY VIRTUE OF SUCH STANDARDS OR PUBLICATIONS. THUS, ESDA EXPRESSLY DISCLAIMS ANY RESPONSIBILITY FOR DAMAGES ARISING FROM THE USE, APPLICATION, OR RELIANCE BY OTHERS ON THE INFORMATION CONTAINED IN THESE STANDARDS OR PUBLICATIONS.

NEITHER ESDA, NOR ITS FORMER AND PRESENT MEMBERS, OFFICERS, EMPLOYEES OR OTHER REPRESENTATIVES WILL BE LIABLE FOR DAMAGES ARISING OUT OF, OR IN CONNECTION WITH, THE USE OR MISUSE OF ESDA STANDARDS OR PUBLICATIONS, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. THIS IS A COMPREHENSIVE LIMITATION OF LIABILITY THAT APPLIES TO ALL DAMAGES OF ANY KIND, INCLUDING WITHOUT LIMITATION, LOSS OF DATA, INCOME OR PROFIT, LOSS OF OR DAMAGE TO PROPERTY AND CLAIMS OF THIRD PARTIES.

Published by:

Electrostatic Discharge Association
7900 Turin Road, Bldg. 3
Rome, NY 13440

JEDEC Solid State Technology Association
3103 North 10th Street
Arlington, VA 22201

Copyright © 2018 by EOS/ESD Association, Inc. and JEDEC Solid State Technology Association All rights reserved

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

ISBN: 1-58537-298-6
FOREWORD

This joint standard\(^1\) was developed under the guidance of the JEDEC JC-14.1 Committee on Reliability Test Methods for Packaged Devices and the ESDA Standards Committee. The content was developed by a joint working group composed of both ESDA and JEDEC. The new standard is intended to replace the existing charged device model ESD standards (JESD22-C101 and ANSI/ESD S5.3.1). It contains the essential elements from both standards.

The earliest electrostatic discharge (ESD) test models and standards simulate a charged object approaching a device and discharging through the device. The most common example is the human body model (HBM). However, with the increasing use of automated device handling systems another potentially destructive discharge mechanism, the charged device model (CDM) becomes increasingly important. In the CDM a device itself becomes charged (e.g., by sliding on a surface (tribocharging) or by electric field induction) and is rapidly discharged (by an ESD event) as it closely approaches a conductive object. A critical feature of the CDM is the metal-metal discharge which results in a very rapid transfer of charge through an air breakdown arc. The CDM test method also simulates metal-metal discharges arising from other similar scenarios, such as the discharging of charged metal objects to devices at different potential.

Accurately quantifying and reproducing this fast metal-metal discharge event is very difficult, if not impossible, due to the limitations of the measuring equipment and its influence on the discharge event. The CDM discharge is generally completed in a few nanoseconds, and peak currents of tens of amperes have been observed. The peak current into the device will vary considerably depending on a large number of factors, including package type and parasitics. The typical failure mechanism observed in MOS devices for the CDM model is dielectric damage, although other damage has been noted.

It has been shown that CDM damage susceptibility correlates better to peak current levels than charge voltage. It has also been shown that the CDM charge voltage sensitivity of a given device is package dependent. For example, the same integrated circuit (IC) in a small area package may be less susceptible to CDM damage at a given voltage, compared to that same IC in a package of the same type with a larger area. In fact, a new Section 7.5 and Normative Annex C address small package CDM and outlines the procedure to characterize small packages (by technology / common ESD design to those in larger packages, capacitance measurement) such that CDM testing for those small packages may not be needed.

This joint standard is a first collaborative result of combining the different CDM platform and measurement devices of both ESDA and JEDEC standards into a single platform standard document. It aims to optimize use of test systems currently in the field, while improving the waveform measurement capability in determining calibrated waveform parameters to maintain the JEDEC legacy data for use in today’s systems. The key combining principle employed in this joint document is the use of current instead of voltage to define test conditions. While CDM voltages will still be reported, the underlying tester verification method uses discharge currents from the JEDEC calibration modules. This is the critical feature that allows the combination of the two former methods into one while maintaining connection to the vast majority of legacy CDM threshold data. More description of the current-based test condition approach is given in Annex C of the document. During development of this joint standard it was discovered (from waveform measurements using high bandwidth oscilloscopes) that additional ferrites (or other high frequency response modifications to the CDM test head) to meet JEDEC waveform compliance with a 1 GHz oscilloscope were being implemented in existing systems. This resulted in distortion of the actual discharge waveform. This standard now prohibits use of these components. Removal of ferrites in existing test heads or replacement of existing test heads with ferrite free versions, are both

\(^{1}\) ESD Association Standard (S): A precise statement of a set of requirements to be satisfied by a material, product, system or process that also specifies the procedures for determining whether each of the requirements is satisfied.
straightforward modifications to ensure ANSI/ESDA/JEDEC JS-002 compliance. Additionally, initial CDM tester qualification using a high bandwidth oscilloscope is now required to ensure compliance.

This is a living document and further improvements in hardware, metrology and test procedure based on this platform are anticipated to be described in future revisions.

This standard is maintained and revised as a joint standard through a memorandum of understanding between JEDEC and ESDA. This standard is a living document and revisions and updates will be made on a routine basis driven by the needs of the electronic industry.

For Technical Information Contact:
EOS/ESD Association, Inc.
7900 Turin Road, Bldg. 3
Rome, NY 13440
Phone (315) 339-6937
www.esda.org

JEDEC Solid State Technology Association
3103 North 10th Street, Suite 204 South
Arlington, VA 22201-2107
Phone (703) 907-7559
Fax (703) 907-7583
www.jedec.org
This document was originally approved on August 29, 2014 and was designated ANSI/ESDA/JEDEC JS-002-2014. ANSI/ESDA/JEDEC JS-002-2018 is a limited revision of ANSI/ESDA/JEDEC JS-002-2014 and was approved on February 16, 2018. ANSI/ESDA/JEDEC JS-002-2018 was prepared by the ESDA 5.3.1 Device Testing (CDM) subcommittee and the JEDEC JC14.1 ESD Task Group.

At the time ANSI/ESDA/JEDEC JS-002-2018 was prepared, the joint CDM subcommittee had the following members:

<table>
<thead>
<tr>
<th>Alan Righter, Co-Chair</th>
<th>Terry Welsher, Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td>Dangelmayer Associates</td>
</tr>
<tr>
<td>Troy Anthony</td>
<td>Robert Ashton</td>
</tr>
<tr>
<td>Electro-Tech Systems</td>
<td>Minotaur Labs</td>
</tr>
<tr>
<td>Brett Carn</td>
<td>Lorenzo Cerati</td>
</tr>
<tr>
<td>Intel Corporation</td>
<td>STMicroelectronics</td>
</tr>
<tr>
<td>Marcel Dekker</td>
<td>David Eppes</td>
</tr>
<tr>
<td>MASER Engineering</td>
<td>Advanced Micro Devices</td>
</tr>
<tr>
<td>Reinhold Gaertner</td>
<td>Horst Gieser</td>
</tr>
<tr>
<td>Infineon Technologies</td>
<td>Fraunhofer EFMT</td>
</tr>
<tr>
<td>Evan Grund</td>
<td>Fatjon (Toni) Gurga</td>
</tr>
<tr>
<td>Grund Technical Solutions, LLC</td>
<td></td>
</tr>
<tr>
<td>Marcos Hernandez</td>
<td>Nathan Jack</td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Chris Jones</td>
<td>Peter Koeppen</td>
</tr>
<tr>
<td>Semtech Corporation</td>
<td>ESD Unlimited</td>
</tr>
<tr>
<td>Tim Maloney</td>
<td>Tom Meuse</td>
</tr>
<tr>
<td>CAI</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Greg O’Sullivan</td>
<td>Nathaniel Peachey, TAS Rep</td>
</tr>
<tr>
<td>Micron Semiconductor, Inc.</td>
<td>Qorvo</td>
</tr>
<tr>
<td>Bill Reynolds</td>
<td>Masanori Sawada</td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td>Hanwa Electronic Ind. Co., Ltd.</td>
</tr>
<tr>
<td>Theo Smedes</td>
<td>Wolfgang Stadler</td>
</tr>
<tr>
<td>NXP Semiconductors</td>
<td>Intel Deutschland GmbH</td>
</tr>
<tr>
<td>Scott Ward</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a preview of "ANSI/ESDA/JEDEC JS-0...". Click here to purchase the full version from the ANSI store.
The following individuals contributed to the development of ANSI/ESDA/JEDEC JS-002-2014:

Robert Ashton
ON Semiconductor

Jon Barth
Barth Electronics

Brett Carn
Intel Corporation

Lorenzo Cerati
STMicroelectronics

Mike Chaine
Micron Technology

Marcel Dekker
MASER Engineering

David Eppes
Advanced Micro Devices

Marti Farris
Intel Corporation

Barry Fernelius
Evans Analytical Group

Reinhold Gaertner
Infineon Technologies

Horst Gieser
Fraunhofer EFMT

Vaughn Gross
Green Mountain ESD Labs, LLC

Evan Grund
Grund Technical Solutions, LLC

Leo G. Henry
ESD/TLP Consultants

Marcos Hernandez
Thermo Fisher Scientific

Nathan Jack
Intel Corporation

Larry Johnson
LSI Corporation

Marty Johnson
Texas Instruments

Chris Jones
Semtech Corporation

Nicholas Lycoudes
Freescale Semiconductor

Timothy Maloney
CAI

Tom Meuse
Thermo Fisher Scientific

Paul Ngan
NXP Semiconductors

Nathaniel Peachey
Qorvo

Paul Phillips
Phasix ESD

Bill Reynolds
IBM

Alan Righter
Analog Devices

Masanori Sawada
Hanwa Electronic Ind. Co., Ltd.

Mirko Scholz
IMEC

Theo Smedes
NXP Semiconductors

Wolfgang Stadler
Intel Mobile Communications

Michael Stevens
Freescale Semiconductor

Scott Ward
Texas Instruments

Terry Welsher
Dangelmayer Associates
TABLE OF CONTENTS

1.0 SCOPE AND PURPOSE ... 1

1.1 SCOPE ... 1

1.2 PURPOSE ... 1

2.0 REFERENCED PUBLICATIONS ... 1

3.0 DEFINITIONS .. 1

4.0 PERSONNEL SAFETY .. 2

4.1 TRAINING ... 2

4.2 PERSONNEL SAFETY .. 2

5.0 REQUIRED EQUIPMENT ... 2

5.1 CDM ESD TESTER .. 2

5.1.1 Current Sensing Element ... 3

5.1.2 Ground Plane .. 3

5.1.3 Field Plate / Field Plate Dielectric Layer .. 3

5.1.4 Charging Resistor .. 4

5.2 WAVEFORM MEASURING EQUIPMENT .. 4

5.2.1 Cable Assemblies ... 4

5.2.2 Equipment for High Bandwidth Waveform Measurement 4

5.2.3 Equipment for 1 GHz Waveform Measurement ... 4

5.3 VERIFICATION MODULES (METAL DISCS) ... 4

5.4 CAPACITANCE METER .. 4

5.5 OHMMETER .. 5

6.0 PERIODIC TESTER QUALIFICATION, WAVEFORM RECORDS, AND WAVEFORM VERIFICATION REQUIREMENTS .. 5

6.1 OVERVIEW OF REQUIRED CDM TESTER EVALUATIONS ... 5

6.2 WAVEFORM CAPTURE HARDWARE .. 5

6.3 WAVEFORM CAPTURE SETUP .. 5

6.4 WAVEFORM CAPTURE PROCEDURE .. 5

6.5 CDM TESTER QUALIFICATION / REQUALIFICATION PROCEDURE 6

6.5.1 CDM Tester Qualification / Requalification Procedure ... 6

6.5.2 Conditions Requiring CDM Tester Qualification / Re-Qualification 7

6.5.3 1 GHz Oscilloscope Correlation with High Bandwidth Oscilloscope 7

6.6 CDM TESTER QUARTERLY AND ROUTINE WAVEFORM VERIFICATION PROCEDURE ... 7

6.6.1 Quarterly Waveform Verification Procedure ... 7

6.6.2 Routine Waveform Verification Procedure ... 7

6.7 WAVEFORM CHARACTERISTICS ... 8

6.8 DOCUMENTATION .. 9

6.9 PROCEDURE FOR EVALUATING FULL CDM TESTER CHARGING OF A DEVICE 9
7.0 CDM ESD TESTING REQUIREMENTS AND PROCEDURES

7.1 TESTER AND DEVICE PREPARATION

7.2 TEST REQUIREMENTS

7.2.1 Test Temperature and Humidity

7.2.2 Device Test

7.3 TEST PROCEDURE

7.4 CDM TEST RECORDING / REPORTING GUIDELINES

7.4.1 CDM Test Recording

7.4.2 CDM Reporting Guidelines

7.5 TESTING OF DEVICES IN SMALL PACKAGES

8.0 CDM CLASSIFICATION CRITERIA

ANNEXES

ANNEX A (NORMATIVE): Verification Module (Metal Discs) Specifications and Cleaning Guidelines for Verification Modules and Testers

ANNEX B (NORMATIVE): Capacitance Measurement of Verification Modules (Metal Discs)

ANNEX C (NORMATIVE): Testing of Small Package Integrated Circuits and Discrete Semiconductors (ICDS)

ANNEX D (INFORMATIVE): CDM Test Hardware and Metrology Improvements

ANNEX E (INFORMATIVE): CDM Tester Electrical Schematic

ANNEX F (INFORMATIVE): Sample Oscilloscope Setup and Waveform

ANNEX G (INFORMATIVE): Field-Induced CDM Tester Discharge Procedures

ANNEX H (INFORMATIVE): Waveform Verification Procedures Using Factor/Offset Adjustment Method

ANNEX I (INFORMATIVE): Determining the Appropriate Charge Delay for Full Charging of a Large Module or Device

ANNEX J (INFORMATIVE): ANSI/ESDA/JEDEC JS-002 Revision History

FIGURES

Figure 1: Simplified CDM Tester Hardware Schematic

Figure 2: CDM Characteristic Waveform and Parameters

Figure 3: Simplified CDM Tester Electrical Schematic

Figure 4: Single Discharge Procedure (Field Charging, ICDM Pulse, and Slow Discharge)

Figure 5: Dual Discharge Procedure (Field Charging, 1st ICDM Pulse, No Field, 2nd ICDM Pulse)

Figure 6: Example of a Waveform Verification Flow for Qualification and Quarterly Checks Using the Factor/Offset Adjustment Method

Figure 7: Example of a Waveform Verification Flow for the Routine Checks Using the Factor/Offset Adjustment Method

Figure 8: Example of Average Ipeak for the Large Verification Module – High Bandwidth Oscilloscope
Figure 9: Example of a Waveform Verification Flow for Qualification and Quarterly Checks Using the Software Voltage Adjustment Method ... 29
Figure 10: Example of a Waveform Verification Flow for the Routine Checks using the Software Voltage Adjustment Method .. 30
Figure 11: Example Characterization of Charge Delay vs Ip .. 32

TABLES
Table 1: CDM Waveform Characteristics for a 1 GHz Bandwidth Oscilloscope 8
Table 2: CDM Waveform Characteristics for a High Bandwidth (≥ 6 GHz) Oscilloscope 8
Table 3: CDM ESDS Device Classification Levels ... 12
Table 4: Specification for CDM Tester Verification Modules (Metal Discs) 13
Table 5: Example Waveform Parameter Recording Table for the Factor/Offset Adjustment Method ... 31
Table 6: Example Waveform Parameter Recording Table for the Software Voltage Adjustment Method .. 31
1.0 SCOPE AND PURPOSE

1.1 Scope
This document establishes the procedure for testing, evaluating, and classifying devices and microcircuits according to their susceptibility (sensitivity) to damage or degradation by exposure to a defined field-induced charged device model (CDM) electrostatic discharge (ESD). All packaged semiconductor devices, thin film circuits, surface acoustic wave (SAW) devices, opto-electronic devices, hybrid integrated circuits (HICs), and multi-chip modules (MCMs) containing any of these devices are to be evaluated according to this standard. To perform the tests, the devices must be assembled into a package similar to that expected in the final application. This CDM document does not apply to socketed discharge model testers. This test method combines the main features of JEDEC JESD22-C101 and ANSI/ESD S5.3.1. New verification procedures and test condition definitions have been introduced to facilitate this combination.

1.2 Purpose
The purpose (objective) of this document is to establish a test method that will replicate CDM failures and provide reliable, repeatable CDM ESD test results from tester to tester, regardless of device type. Repeatable data will allow accurate classifications and comparisons of CDM ESD sensitivity levels.

2.0 REFERENCED PUBLICATIONS
Unless otherwise specified, the following documents of the latest issue, revision or amendment form a part of this standard to the extent specified herein:
ESD ADV1.0. ESD Association Glossary of Terms
JESD99, JEDEC Standard - Terms, Definitions, and Letter Symbols for Microelectronic Devices
JESD88, Dictionary of Terms for Solid-State Technology
JESD625, Requirements for Handling Electrostatic Discharge-Sensitive (ESDS) Devices
ANSI/ESD S20.20, Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)
IEC61340-5-1 – Electrostatics – Part 5-1: Protection of electronic devices from electrostatic phenomena – General Requirements

3.0 DEFINITIONS
The terms used in the body of this document are in accordance with the definitions found in ESD ADV1.0, ESD Association’s Glossary of Terms available for complimentary download at www.esda.org.

charged device model electrostatic discharge (CDM ESD). An electrostatic discharge (ESD) using CDM to simulate the actual discharge event that occurs when a charged device is quickly discharged to another object at a lower electrostatic potential through a single pin or terminal.