Entertainment Services and Technology Association

American National Standard
E1.11 - 2004
Entertainment Technology
USITT DMX512-A
Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories
Entertainment Services and Technology Association

American National Standard
E1.11 - 2004
Entertainment Technology
USITT DMX512-A
Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories
CP/1998-1031r8.0

This edition of ANSI E1.11 was approved by American National Standards Institute on November 8, 2004.

©2004 ASC E1, Safety and Compatibility of Entertainment Technical Equipment and Practices, and its secretariat the Entertainment Services and Technology Association. All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing by electronic means) without the written permission of the copyright holder. Any parties wishing to translate and publish this document in another language must receive permission from the copyright holder.
Notice and Disclaimer

ESTA and ANSI Accredited Standards Committee E1 (for which ESTA serves as the secretariat) do not approve, inspect, or certify any installations, procedures, equipment or materials for compliance with codes, recommended practices or standards. Compliance with an ESTA standard or recommended practice, or an American National Standard developed under Accredited Standards Committee E1 is the sole and exclusive responsibility of the manufacturer or provider and is entirely within their control and discretion. Any markings, identification or other claims of compliance do not constitute certification or approval of any type or nature whatsoever by ESTA or Accredited Standards Committee E1.

ESTA and ANSI Accredited Standards Committee E1 (ASC E1) neither guaranty nor warrant the accuracy or completeness of any information published herein and disclaim liability for any personal injury, property or other damage or injury of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document.

In issuing and distributing this document, ESTA and ASC E1 do not either (a) undertake to render professional or other services for or on behalf of any person or entity, or (b) undertake any duty to any person or entity with respect to this document or its contents. Anyone using this document should rely on his or her own independent judgement or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance.
The ESTA Technical Standards Program

The ESTA Technical Standards Program was created to serve the ESTA membership and the entertainment industry in technical standards related matters. The goal of the Program is to take a leading role regarding technology within the entertainment industry by creating recommended practices and standards, monitoring standards issues around the world on behalf of our members, and improving communications and safety within the industry. ESTA works closely with the technical standards efforts of other organizations within our industry including USITT, PLASA, and VPLT as well as representing the interests of ESTA members to ANSI, UL, and the NFPA. The Technical Standards Program is accredited by the American National Standards Institute as Accredited Standards Committee E1, Safety and Compatibility of Entertainment Technical Equipment and Practices.

The Technical Standards Committee (TSC) was established by ESTA’s Board of Directors to oversee and coordinate the Technical Standards Program. Made up of individuals experienced in standards-making work from throughout our industry, the Committee approves all projects undertaken and assigns them to the appropriate working group. The Technical Standards Committee employs a Technical Standards Manager to coordinate the work of the Committee and its working groups as well as maintain a “Standards Watch” on behalf of members. Working groups include: Camera Cranes, Control Protocols, Electrical Power, Floors, Fog and Smoke, Photometrics, and Rigging.

ESTA encourages active participation in the Technical Standards Program. There are several ways to become involved. If you would like to become a member of an existing working group, as have over two hundred people, you must complete an application which is available from the ESTA office. Your application is subject to approval by the working group and you will be required to actively participate in the work of the group. This includes responding to letter ballots and attending meetings. Membership in ESTA is not a requirement. You can also become involved by requesting that the TSC develop a standard or a recommended practice in an area of concern to you.

The Control Protocols Working Group, which authored this standard, consists of a cross section of entertainment industry professionals representing manufacturers, consultants, dealers, and end-users. ESTA is committed to developing consensus-based standards and recommended practices in an open setting. Future Control Protocols Working Group projects will include updating this publication as changes in technology and experience warrant, as well as developing new standards and recommended practices for the benefit of the entertainment industry.
The United States Institute for Theatre Technology, Inc. (USITT) is the Association of Design, Production, and Technology Professionals in the Performing Arts and Entertainment Industry. Founded in 1960, the mission of the Institute is to advance the professions of design and technology in the performing arts by disseminating information, actively promoting the advancement of knowledge and skills and facilitating national and international communication among its members. USITT is the United States Center of OISTAT, the International Organization of Scenographers, Theatre Architects and Technicians.

USITT
6443 Ridings Rd.
Syracuse, NY 13206-1111
(800) 93USITT (315) 463-6463 (315) 463-6525 FAX
http://www.usitt.org
Contents

Foreword ... vi

1 General .. 1

 1.1 Scope .. 1

 1.2 Overview and Architecture ... 1

 1.3 Appropriate uses of this Standard ... 1

 1.4 Classes of data appropriate for transmission over links designed to this Standard 2

 1.5 Classes of data not appropriate for transmission over links designed to this Standard 2

 1.6 Compliance ... 2

2 Normative references .. 2

3 Definitions .. 3

4 Electrical Specifications and Physical Layer .. 6

 4.1 General .. 6

 4.2 Electrical isolation .. 6

 4.3 Topology .. 6

 4.4 DMX512 ports ... 6

 4.5 Data link common and grounding topologies .. 7

 4.6 Preferred method of earth grounding data link common ... 7

 4.7 Primary data link .. 7

 4.8 Secondary data link ... 7

 4.9 Data Link termination procedures ... 7

 4.10 Unpowered devices ... 8

5 Nominal Operating Characteristics .. 8

 5.1 General .. 8

 5.2 Chassis in power isolated equipment .. 8

 5.3 Earth grounding of data link common for transmitters .. 8

 5.4 Ground referenced transmitters .. 8
5.5 Disallowed transmitter topology ... 10
5.6 Earth grounding of data link common for receivers ... 10
5.7 Isolated Receiver characteristics ... 10
5.8 Disallowed receiver topology .. 12
5.9 DMX512 Processing devices .. 12
5.10 Loading designation ... 12

6 Protection ... 13
6.1 Minimum protection against interconnection damage 13
6.2 Minimum Electro Static Discharge (ESD) protection 13

7 Connection Methods .. 13
7.1 Equipment fitted with user accessible pluggable data link connections 13
7.2 Equipment intended for fixed installation with internal connections to the data link 14
7.3 IEC 60603-7 8-position modular connectors .. 14

8 Data Protocol .. 15
8.1 Format .. 15
8.2 Slot format ... 15
8.3 Break ... 16
8.4 Mark After Break .. 16
8.5 START code ... 16
8.6 Maximum number of data slots .. 18
8.7 Minimum number of data slots .. 18
8.8 Defined line state between slots ... 18
8.9 Defined line state between data packets (Mark Before Break) 18
8.10 Break-to-Break spacing .. 18
8.11 Timing Diagram - data+ .. 19

9 Receiver Performance .. 20
9.1 Rejection of improperly framed slots ... 20
D4.2 SIP format ... 43
D4.3 SIP checksum pointer .. 43
D4.4 Control bit field ... 44
D4.5 Checksums ... 45
D4.6 SIP Sequence number .. 45
D4.7 Originating universe .. 45
D4.8 DMX512 processing level 45
D4.9 Software version ... 45
D4.10 Packet lengths ... 45
D4.11 Number of packets .. 45
D4.12 Manufacturer ID .. 46
D4.13 Packet history .. 46
D4.14 SIP Checksum .. 46

Annex E (Normative) - Alternate START Code, Manufacturer ID, and Enhanced Functionality

Registration .. 47
E1 Alternate START Code Registration Policy: 1 - 255 decimal (01 - FF hexadecimal) 47
E2 Authorized use .. 47
E3 Reserved Alternate START Codes 47
E4 Requests for Registration of New START Codes 47
 E4.1 Number of Alternate START Codes per entity 47
 E4.2 Selection of the Alternate START Code value and Manufacturer ID 47
E5 Requirements for registration of an EF protocol 47
E6 Documentation Register ... 48
 E6.1 Documentation for use of Alternate START Codes 48
 E6.2 Maintenance and publication 48
 E6.3 Supplemental documentation 48
E7 Ownership ... 48

Annex F (Informative) - Protocol Implementation Conformance Statement (PICS) for Annexes A through E ... 49
F1 Introduction ... 49
F2 Implementation identification .. 49
 F2.1 Identification .. 49
 F2.2 Protocol summary .. 49
F3 (PICS) tables for Annexes A through E 50
 F3.1 Annex A – Non preferred (alternate) topologies 50
Foreword

(This foreword contains no requirements and is not part of E1.11)

This Standard describes a method of digital data transmission between controllers and controlled lighting equipment and accessories, including dimmers and related equipment. This Standard is intended to provide for interoperability at both communication and mechanical levels with controllers made by different manufacturers.

There are five normative annexes in this Standard. These address extensions of the base standard and are considered part of the Standard, which means that when an extension described in an Annex is implemented, compliance with the annex is mandatory. However, a product compliant with the Standard can be manufactured without implementing these annexes.

The original version of the DMX512 Standard was developed in 1986 by the Engineering Commission of the United States Institute for Theatre Technology, Inc. (USITT). Minor revisions were made in 1990. DMX512 has gained international acceptance throughout the entertainment industry, even though USITT is not formally accredited as a standards making body. The earlier versions of this Standard covered only data used by dimmers. In practice this Standard has been used by a wide variety of devices; this version recognizes this fact.

In 1998, it became evident that additional updates to the Standard were necessary and formal recognition through an internationally recognized standards organization was required. USITT issued a Call for Comments in order to solicit recommendations for changes to the Standard. At the same time, USITT transferred maintenance of DMX512 to ANSI Accredited Standards Committee E1, Safety and Compatibility of Entertainment Technical Equipment and Practices (more commonly known as the ESTA Technical Standards Program, or TSP).

A Task Group established under the TSP’s Control Protocols Working Group acted on the proposals received in response to the Call for Comments. The primary goal was to make editorial updates to DMX512 appropriate for current times, including the addition of technical features while maintaining a balance with backward compatibility. Many proposals, while technically innovative, could not be accepted because their implementation would not have been backward compatible and would have immediately rendered obsolete most of the installed base of equipment.

This document is a result of the actions taken on those proposals and subsequent development under the Policies and Procedures of the ESTA Technical Standards Program. Despite being an American National Standard, development has had strong international participation and support.
1 General

1.1 Scope

This Standard describes a method of digital data transmission between controllers and controlled equipment as described in Clause 1.4 and accessories, including dimmers. It covers electrical characteristics, data format, data protocol, and connector types.

This Standard is intended as a guide for:

1. Equipment manufacturers and system specifiers who wish to integrate systems of lighting equipment and accessories, including dimmers, with controllers made by different manufacturers.

2. Equipment manufacturers seeking to implement a standard digital transmission protocol in their lighting control and accessory products.

3. System specifiers and designers to gain detailed information about allowed connectors and allowed system topologies.

This standard is not intended to replace existing protocols other than USITT DMX512 and DMX512/1990. Cable requirements and premises wiring are not within the scope of this standard.

Equipment compliant with this standard will be marked DMX512-A or USITT DMX512-A in order to distinguish it from the previous (informally recognized) versions. Unless otherwise noted, references to DMX512 in this document refer to DMX512-A.

1.2 Overview and Architecture

This standard uses a simple asynchronous eight-bit serial protocol consisting of an untyped byte stream produced by standard UARTs. The physical media, not addressed in this document, is normally, but not exclusively, a two-pair cable, with each pair serving as a data link. The media is driven using ANSI/TIA/EIA-485-A-1998 (hereafter referred to as EIA-485-A in this document) balanced data transmission techniques. Physical connection at devices is via 5-pin XLR connectors or by "hard-wiring" to terminals. Restricted use of connectors other than 5-pin XLR is allowed if certain conditions apply (see clause 7).

Data on the primary data link is sent in packets of up to 513 slots. The first slot is a START Code, which defines the information in the subsequent slots in the packet. The interoperability of equipment complying with the Standard is largely due to the use of the NULL START Code by transmitting devices. Proper function is dependent upon the receiving device(s) extracting the pertinent data for processing from each transmitted packet.

Data on the secondary data link, when implemented, is used for a variety of purposes, all of which fall within the scope of EIA-485-A. Identification of the required circuit topology for any particular implementation is defined.

1.3 Appropriate uses of this Standard

Equipment designers and general users of this Standard will recognize that this Standard is intended to fill only a limited range of uses. Other standards will be more appropriate for different uses.