ANSI E1.3 - 2001 (R2016),
Entertainment Technology—Lighting
Control Systems - 0 to 10 V Analog
Control Specification

Document number: CP/1997-1003r11

Approved as an American National Standard by ANSI's Board of Standards Review on 17 February 2016.

This document is a reaffirmation without substantive changes of ANSI E1.3 - 2001.

© 2016 Entertainment Services and Technology Association
Notice and Disclaimer

The Entertainment Services and Technology Association (ESTA) does not approve, inspect, or certify any installations, procedures, equipment or materials for compliance with codes, recommended practices or standards. Compliance with an ESTA standard or recommended practice is the sole and exclusive responsibility of the manufacturer or provider and is entirely within their control and discretion. Any markings, identification, or other claims of compliance do not constitute certification or approval of any type or nature whatsoever by ESTA.

ESTA neither guarantees nor warrants the accuracy or completeness of any information published herein and disclaim liability for any personal injury, property or other damage or injury of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document.

In issuing and distributing this document, ESTA does not either (a) undertake to render professional or other services for or on behalf of any person or entity, or (b) undertake any duty to any person or entity with respect to this document or its contents. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance.
The ESTA Technical Standards Program

The Technical Standards Program (TSP) was created to serve the Entertainment Services and Technology (ESTA) membership and the entertainment industry in technical standards related matters. The goal of the Program is to take a leading role regarding technology within the entertainment industry by creating recommended practices and standards, monitoring standards issues around the world on behalf of our members, and improving communications and safety within the industry. ESTA works closely with the technical standards efforts of other organizations within our industry, including USITT and VPLT, as well as representing the interests of ESTA members to ANSI, UL, and the NFPA. The Technical Standards Program is accredited by the American National Standards Institute.

The Technical Standards Council (TSC) was established to oversee and coordinate the Technical Standards Program. Made up of individuals experienced in standards-making work from throughout our industry, the Council approves all projects undertaken and assigns them to the appropriate working group. The Technical Standards Council employs a Technical Standards Manager to coordinate the work of the Council and its working groups as well as maintain a “Standards Watch” on behalf of members. Working groups include: Camera Cranes, Control Protocols, Electrical Power, Floors, Fog and Smoke, Followspot Position, Photometrics, Rigging, and Stage Lifts.

ESTA encourages active participation in the Technical Standards Program. There are several ways to become involved. If you would like to become a member of an existing working group, you must complete an application which is available from the TSP website at http://tsp.esta.org/tsp/documents/procedural_docs.html. Your application is subject to approval by the working group and voters are required to vote on letter ballots and attend meetings. All members are responsible for an annual participation fee. Membership in ESTA is not a requirement. You can also become involved by requesting that the TSC develop a standard or a recommended practice in an area of concern to you.

The Control Protocols Working Group, which authored this Standard, consists of a cross section of entertainment industry professionals representing a diversity of interests. ESTA is committed to developing consensus-based standards and recommended practices in an open setting.
Investors in Innovation

The Technical Standard Program (TSP) is financially supported by ESTA and by companies and individuals who make undirected donations to the TSP. Contributing companies and individuals who have helped fund the TSP are recognized as “Investors in Innovation.” The Investors in Innovation when this standard was approved on 28 December 2015 included these companies and individuals:

VISIONARY

- Altman Lighting, Inc.
- B-Hive Industries, Inc.
- Boston Illumination group
- Candela Controls Inc.
- Clark-Reder Engineering
- Columbus McKinnon
- DesignLab Chicago / Interesting Products
- John T. McGraw
- ProSight Specialty Insurance
- Sapsis Rigging
- Theatre Safety Programs
- United States Institute for Theatre Technology
- Ken Vannice
- View One, Inc.
- Steve A. Walker & Associates*
- Ralph Weber

INVESTOR

- Barbizon Electric
- Louis Bradfield*
- EGI Event Production Services*
- ETC
- Indianapolis Stage Sales & Rentals, Inc.*
- H&H Specialties, Inc.
- Ken Production Services Inc.
- Eddie Kramer
- McLaren Engineering Group
- Mountain Productions Inc.
- Texas Scenic Company

SUPPORTER

- AC Power Distribution
- American Society of Theatre Consultants
- Roy Bickel
- Bigger Hammer Production Services
- ELS / Entertainment Lighting Services
- Entertainment Structures Group
- Tony Giovannetti
- IATSE Local 514
- IATSE Local 728
- Jones-Phillips Associates, LLC
- The Kentucky Center for the Performing Arts
- Lightstream Design, LLC
- Musique Xpress Lights, Inc.*
- Oasis Stage Werks
- See Factor Industry
- Stage Equipment & Lighting
- Stage Labor of the Ozarks
- Strohmeier Lighting, Inc.
- TOMCAT
- Total Structures*
- Arjan van Vught
- Stephen Vanciel
- Vincent Lighting Systems*

*Investor for over 15 years
Acknowledgements

The Control Protocols Working Group members when this document was approved by the working group on 28 December 2015 were:

Voting members (Name; Representing; Interest category)

Daniel W. Antonuk; Electronic Theatre Controls, Inc.; MP
Paul Beasley; Walt Disney Company; U
Robert Bell; Acuity Brands Inc.; MP
Marcus Bengtsson; LumenRadio AB; MP
Scott M. Blair; Full Throttle Films/ VER; DR
Brent Boulnois; Candela Controls, Inc.; DR
Ian Campbell; Doug Fleenor Design, Inc.; MP
Milton Davis; Doug Fleenor Design, Inc.; MP
Adam De Witt; Adept Anomaly; U
Gary Douglas; Acuity Brands Inc.; MP
Bill Ellis; Candela Controls, Inc.; DE
Doug Fleenor; Doug Fleenor Design, Inc.; MP
Randy L. Fox; Walt Disney Company; U
Andrew Frazer; Stellascapes.com; MP
Robert Goddard; Goddard Design Co.; MP
Dennis Grow; I.A.T.S.E. Local 728; U
Mitch Hefter; USITT; U
Jerome Hochman; Full Throttle Films/ VER; DR
Harrison Hohnolt; City Theatrical, Inc.; MP
John Huntington; I.A.T.S.E. Local 1; U
Michael Karlsson; LumenRadio AB; MP
Jonathan Kemble; Barco; MP
Paul Kleissler; City Theatrical, Inc.; MP
Edwin S. Kramer; I.A.T.S.E. Local 1; U
Ulrich Kunkel; E3 Engineering & Education for Entertainment GmbH; U
Roger Lattin; I.A.T.S.E. Local 728; U
Hans Lau; LumenRadio AB; MP
Michael Lay; Royal Philips; MP
Joshua Liposky; Lex Products Corp.; CP
Dan Lisowski; University of Wisconsin - Madison; DE
Kevin Loewen; Acuity Brands Inc.; MP
Tyrone Mellon, Jr.; Lex Products Corp.; CP
Joshua Moyerman; Stellascapes.com; MP
Peter Newman; Open Lighting Project; G
Simon Newton; Open Lighting Project; G
Maya Nigrosh; Electronic Theatre Controls, Inc.; MP
Andrew Nikel; City Theatrical, Inc.; MP
Kimberly Corbett Oates; Schuler Shook; DE
Jim Ohrberg; Candela Controls, Inc.; DR
Claude Ostyn; Full Throttle Films/ VER; DR
Edward A. (Ted) Paget; Electronic Theatre Controls, Inc.; MP
Jason Potterf; Cisco; MP
Charles Reese; Production Resource Group; DR
Alan M. Rowe; I.A.T.S.E. Local 728; U
Larry Schoeneman; DesignLab Chicago, Inc.; DR
Dane Styczynski; University of Wisconsin - Madison; DE
Steve Terry; Electronic Theatre Controls, Inc.; MP
Maurits van der Hoorn; Acuity Brands Inc.; MP
Observer members (Name; Representing; Interest category)
Christian Allabauer; Lighting Innovations, Hermann Sorger GmbH; CP
Simon Alpert; Lighttech Event Technologies; CP
Klaus Amling; Licht-Technik; MP
Matthew Ardine; IATSE Local 728; U
Robert Barbagallo; Solotech Inc.; U
Adam Bennette; Electronic Theatre Controls, Inc.; MP
David Bertenshaw; David Bertenshaw; G
Stephen Bickford; T. Kondos Associates; U
Torrey Bievenour; Vision Quest Lighting; G
Lee J. Bloch; Bloch Design Group, Inc.; G
David A. Boller; Organic Machines LLC; CP
Ron Bonner; PLASA EU; G
Stef Bressers; MagicFX B.V.; MP
André Broucke; André Broucke; G
Ken Bruns; Lumenpulse Lighting Inc.; MP
Justyn Butler; JBOTS; CP
Jean-Francois Canuel; A.C. Lighting Ltd.; CP
Steve Carlson; High Speed Design, Inc.; MP
Sang-Il Choi; Kyungpook National University; G
Jon Chuchla; Audio Visual Systems, Inc.; G
Soo-Myong Chung; Bloch Design Group, Inc.; G
Paul J. Clark; HxDx; CP
Edward R. Condit; Edward R. Condit; G
Fraser Connolly; Artistic Licence Holdings; DE
Eric Cornwell; West Side Systems; U
Stuart Cotts; Oregon Shakespeare Festival; U
Klas Dalbjorn; TC Group; MP
Ben Darrington; Wireless Solutions Sweden AB; MP
Jeremy Day; Lumenpulse Lighting Inc.; MP
Gilray Densham; CAST Group Inc; MP
Larry Dew; W.A. Benjamin Electric Co.; DE
Gary Dove; Dove Systems; MP
Tucker Downs; Tucker Downs; U
Yongshun Duan; Macostar International Ltd.; CP
Hamish Dumbreck; James Embedded Systems Engineering; MP
Lauren E. Dunn; Lauren E. Dunn (Larry); DE
Jerry Durand; Durand Interstellar, Inc.; CP
James Eade; ABTT; G
Andrew Eales; Rhodes University; U
Matthew Earnshaw; acdc LED Ltd.; MP
Paul K. Ericson; Sparling & IES; DE
Jon R. Farley; Sixteenth Avenue Systems; CP
Martin Farnik; Robe Show Lighting s.r.o.; MP
Derek R. Flickinger; Interactive Homes, Inc.; U
Trevor Forrest; Helvar Lighting Control; MP
Howard Forryan; Harting KGAA; G
Steve Friedlander; Auerbach Pollock Friedlander; U
Ed Garstkiewicz; Harting KGAA; G
Philip Gartner; AusChristmasLighting; U
Jerry Gorrell; Theatre Safety Programs; G
<table>
<thead>
<tr>
<th>Tom Grimes; Barco; MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Halliday; Rob Halliday; U</td>
</tr>
<tr>
<td>Sean Harding; High Output, Inc.; G</td>
</tr>
<tr>
<td>Douglas Heriot; Douglas Heriot; MP</td>
</tr>
<tr>
<td>Bill Hewlett; Hewlett Electronics; CP</td>
</tr>
<tr>
<td>Jim Holladay; Luxence; G</td>
</tr>
<tr>
<td>Wayne David Howell; Artistic Licence Holdings; DE</td>
</tr>
<tr>
<td>Il Soon JANG; Electronics and Telecommunications Research Institute; G</td>
</tr>
<tr>
<td>Sierk Janszen; Ground Zero; U</td>
</tr>
<tr>
<td>Eric Johnson; Eric Johnson; G</td>
</tr>
<tr>
<td>Rob Johnston; Interactive Technologies, Inc.; MP</td>
</tr>
<tr>
<td>Jussi Kallioinen; Eastway Sound & Lighting; U</td>
</tr>
<tr>
<td>Tae Gyu Kang; Electronics and Telecommunications Research Institute; G</td>
</tr>
<tr>
<td>Hyun Jong Kim; Electronics and Telecommunications Research Institute; G</td>
</tr>
<tr>
<td>Peter Kirkup; Peter Kirkup; G</td>
</tr>
<tr>
<td>Hiroshi Kita; Marumo Electric Co., Ltd.; MP</td>
</tr>
<tr>
<td>Phil Klapwyk; IATSE Local 891; U</td>
</tr>
<tr>
<td>Mark T. Kraft; Lehigh Electric Products Co.; MP</td>
</tr>
<tr>
<td>Kristen Kuipers; Newcomb & Boyd; DE</td>
</tr>
<tr>
<td>Jason Kyle; JPK Systems Ltd.; MP</td>
</tr>
<tr>
<td>Rick Leinen; Leviton Manufacturing Co., Inc.; MP</td>
</tr>
<tr>
<td>Hans Leiter; Electronic Theatre Controls, Inc.; MP</td>
</tr>
<tr>
<td>Jon Lenard; Applied Electronics; MP</td>
</tr>
<tr>
<td>Maarten Lepelaars; eldoLED; MP</td>
</tr>
<tr>
<td>Sang-Kyu Lim; Electronics and Telecommunications Research Institute; G</td>
</tr>
<tr>
<td>Mark Manthei; Shure Inc.; G</td>
</tr>
<tr>
<td>Paul F. Mardon; Pulsar Ltd.; MP</td>
</tr>
<tr>
<td>Mick Martin; ShowCAD Control Systems; MP</td>
</tr>
<tr>
<td>Paul Kenneth McEwan; Cooper Controls Ltd.; MP</td>
</tr>
<tr>
<td>Brian McKelvey; Brian McKelvey; G</td>
</tr>
<tr>
<td>John Mehlretter; Lehigh Electric Products Co.; MP</td>
</tr>
<tr>
<td>Avraham "Avi" Mendall Mor; Lightswitch; U</td>
</tr>
<tr>
<td>Jeff T. Miller; Walt Disney Company; U</td>
</tr>
<tr>
<td>John Musarra; John Musarra; U</td>
</tr>
<tr>
<td>Tobin Neis; Barbizon Companies; DR</td>
</tr>
<tr>
<td>Dan T. Nguyen; LynTec; MP</td>
</tr>
<tr>
<td>Lars F. Paape; Scientific Algorithms and Embedded Systems; U</td>
</tr>
<tr>
<td>Ben Peoples; Pittsburgh Hoist & Sandbag Company; CP</td>
</tr>
<tr>
<td>Gary Pritchard; LSC Lighting Systems PTY Ltd; MP</td>
</tr>
<tr>
<td>Torben Kaas Rasmussen; Martin Professional A/S; G</td>
</tr>
<tr>
<td>Charlie Richmond; Richmond Sound Design Ltd.; CP</td>
</tr>
<tr>
<td>Bernardo Benito Rico; Ben-Ri Electronica S.A.; MP</td>
</tr>
<tr>
<td>Steve Roberts; Carr & Angier; G</td>
</tr>
<tr>
<td>Erwin Rol; Erwin Rol; G</td>
</tr>
<tr>
<td>Dietmar Rottinghaus; Connex GmbH; MP</td>
</tr>
<tr>
<td>Richard Salzedo; Avolites Ltd.; MP</td>
</tr>
<tr>
<td>Yngve Sandboe; Sand Network Systems, Inc.; MP</td>
</tr>
<tr>
<td>Nicolai Gubi Schmidt; Gobo & Highlight A/S; DR</td>
</tr>
<tr>
<td>Martin Searancke; Dream Solutions Ltd.; MP</td>
</tr>
<tr>
<td>John Sellers; AIM Northwest; G</td>
</tr>
<tr>
<td>Ford Sellers; Chauvet Lighting; MP</td>
</tr>
<tr>
<td>Andrew Sherar; Lightmoves PLC; MP</td>
</tr>
<tr>
<td>Sean Sill; Open Lighting Project; G</td>
</tr>
<tr>
<td>Ashley Simper; TMB; DR</td>
</tr>
</tbody>
</table>
Table of Contents

Notice and Disclaimer...i
Investors in Innovation..iii
Contact Information ..iv
Acknowledgements..v

1 Scope...1

2 History.. 1

3 Purpose..1

4 Applicability...1

5 Terminology and use..2
 5.1 General... 2
 5.2 Zero.. 2
 5.3 Full.. 2
 5.4 Scale.. 2

6 Electrical specifications...3
 6.1 Transmitter specifications... 3
 6.1.1 Amplitude (Transmitter)... 3
 6.1.2 Current source capacity and output impedance (Transmitter)...3
 6.1.3 Diode protection.. 3
 6.2 Receiver specifications... 4
 6.2.1 Amplitude (Receiver)... 4
 6.2.2 Input impedance (Receiver)..4
 6.2.3 Input filtering.. 5
 6.3 Short circuit protection.. 5
 6.4 Isolation.. 5

7 Cabling...5
 7.1 Cable length... 5
 7.1.1 Channel conductors.. 6
 7.1.2 Common conductor... 6

8 Connectors...6

9 Markings...6
1 Scope
This standard describes a method of controlling equipment by means of an analog control voltage. It is primarily intended for lighting control equipment (controllers and dimmers) although any equipment which might be controlled by a lighting controller (intelligent lighting, strobe lights, fog machines, etc.) could use this control method.

Some 0 to 10 V controlled devices (such as dimmable fluorescent ballasts) require current-sink controllers. E1.3 controllers are current-source devices and cannot control these receivers without modification or additional interface components.

This standard does not address electro-magnetic compatibility (EMC) issues, which might result from control line oscillations caused by poorly designed controllers or cabling practices.

2 History
Prior to digital and analog multiplex control systems, most remote control of lighting dimmers was done using a wire-per-dimmer system. Each dimmer had a dedicated control wire (or pair of wires). The output voltage of the dimmer was proportional to the signal on the control wire. Some of these wire-per-dimmer systems required that the control voltage be the same frequency and in phase with the dimmer's AC output. Some systems used high voltage control signals. Some systems used low voltage direct current control signals.

The safety and flexibility of the low voltage DC control system gradually made it the system of choice. Many different low voltage systems were used. Some common control signals were 0 to 10 V, 0 to 15 V, 0 to 24 V, 0 to 28 V. In most cases zero volts was considered "off." Negative control voltages were also common: 0 to -10 V, 0 to -15 V, 0 to -28 V. Again in most cases zero volts was off. Some control signals used a voltage other than zero for off; for example 2 to 7.6 V and 2 to 10.5 V. In these, the lower voltage was typically "off."

Over time the 0 to 10 V control system became the most popular. As of the writing of this specification, 0 to 10 V control systems are popular not only in lighting but for motor control and industrial automation as well. Many digital to analog converters have a standard 0 to 10 V setting. The 0 to 10 V control system is easy to convert to percentage (add a zero), is easy to implement using operational amplifiers and consumer circuits, is a low enough voltage to be safe and is a high enough voltage to avoid most noise problems.

3 Purpose
The purpose of this specification is to document the now common 0 to 10 V direct current control system as typically used in lighting applications and provide specifications for new designs.

4 Applicability
This specification is intended for the use of:

➢ System specifiers who wish to insure that the equipment they specify meets an industry standard control system.
➢ Equipment manufacturers seeking to adopt an industry standard control system for basic controller/receiver interfacing.
➢ Lighting technicians who wish to understand and troubleshoot analog control systems.