American National Standard for
Rotodynamic Centrifugal Slurry Pumps
for Nomenclature, Definitions, Applications, and Operation
American National Standard for

Rotodynamic Centrifugal Slurry Pumps
for Nomenclature, Definitions, Applications, and Operation

Sponsor
Hydraulic Institute
www.Pumps.org

Approved August 5, 2016
American National Standards Institute, Inc.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published By
Hydraulic Institute
6 Campus Drive, First Floor North
Parsippany, NJ 07054-4406
www.Pumps.org

Copyright © 2016 Hydraulic Institute
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America
Contents

12 Rotodynamic centrifugal slurry pumps ... 1
 12.1 Introduction ... 1
 12.1.1 Scope .. 1
 12.1.2 Purpose ... 1
 12.1.3 Pump types and nomenclature 1
 12.1.4 Definition of slurry .. 2
 12.1.5 Definition of slurry pumps 2
 12.1.6 Overhung impeller ... 3
 12.1.7 Frame mounted ... 3
 12.1.8 Cantilevered wet pit ... 3
 12.1.9 Submersible .. 3
 12.1.10 Lined type .. 4
 12.1.11 Unlined type ... 4
 12.1.12 Construction drawings 4
 12.1.13 Part names .. 4
 12.1.14 Letter dimensional designations 27
 12.2 Definitions .. 31
 12.2.1 Rate of flow (Q) .. 33
 12.2.2 Speed (n) ... 33
 12.2.3 Head (h) - general term 33
 12.2.4 Condition points ... 35
 12.2.5 Suction conditions ... 35
 12.2.6 Power .. 36
 12.2.7 Pump pressures ... 37
 12.2.8 Mechanical seal terms 37
 12.2.9 Slurry terminology .. 38
 12.3 Design and application .. 44
 12.3.1 Scope .. 44
 12.3.2 Slurry services .. 44
 12.3.3 Froth pumping ... 54
 12.3.4 Wear in centrifugal slurry pumps 58
 12.3.5 Hydraulic design and application considerations 63
 12.3.6 Slurry system design 64
 12.3.7 Wetted materials of construction 65
 12.3.8 General arrangement details 68
 12.3.9 Drive train arrangements 85
 12.4 Installation, operation, and maintenance 86
 12.4.1 Installation .. 86
 12.4.2 Nozzle loads ... 86
 12.4.3 Connecting piping .. 91
 12.4.4 Commissioning .. 92
 12.4.5 Start-up .. 92
 12.4.6 Storage of elastomer linings 92
 12.4.7 Impeller removal ... 92
 12.4.8 Axial adjustment of the bearing housing 92
 12.4.9 Piping system design 92
 12.4.10 Possible operating problems 93
 12.4.11 Spare parts stock .. 95
 12.4.12 Maintenance procedures for maximum part life 95
 12.4.13 Operational considerations 96
12.5 Intentionally left blank .. 96
12.6 Testing ... 96
12.6.1 Scope ... 96
12.6.2 Test conditions ... 97
12.6.3 Manufacturer's testing .. 97
12.6.4 Field tests .. 97
12.6.5 Wear tests .. 97
12.6.6 Instrumentation ... 98

Appendix A Equipment data sheets (informative) 99
Appendix B Nozzle loads tables (informative) .. 104
Appendix C Materials data (informative) .. 106
Appendix D Source material and references (informative) 109
Appendix E Index (informative) ... 113

Figures
12.1.3 – Rotodynamic centrifugal slurry pump types 2
12.1.5 – Typical material types and discharge pressure for particle size 3
12.1.13a – Overhung impeller, separately coupled, single stage, frame mounted, metal-lined pump (OH0). ... 5
12.1.13b – Overhung impeller, separately coupled, single stage, frame mounted, elastomer-lined pump (OH0) ... 6
12.1.13c – Overhung impeller, separately coupled, single stage, frame mounted, elastomer-lined pump, adjustable sideliners (OH0) 7
12.1.13d – Overhung impeller, separately coupled, single stage, frame mounted, end suction, vulcanized-elastomer-lined pump (OH0) 8
12.1.13e – Overhung impeller, separately coupled, single stage, frame mounted, end suction, metal, unlined casing pump (OH0) 9
12.1.13f – Overhung impeller, separately coupled, single stage, frame mounted, side inlet, metal, unlined casing pump (OH0) 10
12.1.13g – Overhung impeller, separately coupled, single stage, frame mounted, end suction, metal, tie bolt plate construction pump (OH0) 11
12.1.13h – Overhung, open impeller, separately coupled, single stage, foot mounted, metal, ASME B73.1 type pump (OH1) .. 12
12.1.13i – Overhung impeller, separately coupled, single stage, wet pit cantilever, elastomer-lined, single suction pump (VS5) 13
12.1.13j – Overhung impeller, separately coupled, single stage, wet pit cantilever, elastomer, vulcanized-lined, double suction pump (VS5) 14
12.1.13k – Overhung impeller, separately coupled, single stage, wet pit cantilever, unlined, metal, single suction pump (VS5) 15
12.1.13l – Overhung impeller, close coupled, single stage, submersible, elastomer-coated, single suction pump (OH8B) .. 16
12.1.13m – Overhung impeller, close coupled, single stage, submersible, elastomer-lined, single suction pump (OH8B) .. 17
Foreword (Not part of Standard)

Purpose and aims of the Hydraulic Institute

The purpose and aims of the Hydraulic Institute are to promote the advancement of the pump manufacturing industry and further the interests of the public, and to this end, among other things:

a) Develop and publish standards;
b) Address pump systems;
c) Expand knowledge and resources;
d) Educate the marketplace;
e) Advocate for the industry.

Purpose of Standards and Guidelines

1) Hydraulic Institute Standards and Guidelines are adopted in the public interest and are designed to help eliminate misunderstandings between the manufacturer, the purchaser, and/or the user, and to assist the purchaser in selecting and obtaining the proper product for a particular need.

2) Use of Hydraulic Institute Standards and Guidelines is completely voluntary. Existence of Hydraulic Institute Standards does not in any respect preclude a member from manufacturing or selling products not conforming to the Standards.

Definition of a Standard of the Hydraulic Institute

Quoting from Article XV, Standards, of the By-Laws of the Institute, Section B:

“An Institute Standard defines the product, material, process or procedure with reference to one or more of the following: nomenclature, composition, construction, dimensions, tolerances, safety, operating characteristics, performance, quality, rating, testing and service for which designed.”

Definition of a Hydraulic Institute Guideline

A Hydraulic Institute Guideline is not normative. The guideline is tutorial in nature, to help the reader better understand the subject matter.

Comments from users

Comments from users of this standard will be appreciated, to help the Hydraulic Institute prepare even more useful future editions. Questions arising from the content of this standard may be directed to the Technical Director of the Hydraulic Institute. If appropriate, the inquiry will then be directed to the appropriate technical committee for provision of a suitable answer.

Revisions

American National Standards of the Hydraulic Institute are subject to constant review, and revisions are undertaken whenever it is found necessary because of new developments and progress in the art. If no revisions are made for five years, the standards are reaffirmed using the ANSI canvass procedure.

Disclaimer

This document was prepared by a committee of the Hydraulic Institute and approved by following ANSI essential requirements. Neither the Hydraulic Institute, Hydraulic Institute committees, nor any person acting on behalf of the Hydraulic Institute: a) makes any warranty, expressed or implied, with respect to the use of any information, apparatus,
method, or process disclosed in this document or guarantees that such may not infringe privately owned rights; b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this guideline. The Hydraulic Institute is in no way responsible for any consequences to an owner, operator, user, or anyone else resulting from reference to the content of this guideline, its application, or use.

This document does not contain a complete statement of all requirements, analyses, and procedures necessary to ensure safe or appropriate selection, installation, testing, inspection, and operation of any pump or associated products. Each application, service, and selection is unique with process requirements that shall be determined by the owner, operator, or his designated representative.

Units of measurement

Metric units of measurement are used, and corresponding US customary units appear in brackets. Charts, graphs, and sample calculations are also shown in both metric and US customary units. Because values given in metric units are not exact equivalents to values given in US customary units, it is important that the selected units of measure to be applied be stated in reference to this standard. If no such statement is provided, metric units shall govern.

Consensus

Consensus for this American National Standard was achieved by use of the canvass method. The following organizations, recognized as having an interest in the standardization of pumps, were contacted prior to the approval of this revision of the standard. Inclusion in this list does not necessarily imply that the organization concurred with the submittal of the proposed standard to ANSI.

Black & Veatch (B & V) LVVWD- Las Vegas Valley Water District
Brown and Caldwell Outotec
Chevron Parametrix, Inc.
DuPont Company Patterson Pump Company
Ekwestrel Corp Pentair – Fairbanks Nijhuis
Fluid Sealing Association Pumps Positive
GIW Industries, Inc. (A KSB Company) Rotating Equipment Repair, Inc
Healy Engineering, Inc. Sulzer Pumps (US) Inc.
Hidrostal Syncrude Canada
John Anspach Consulting Weir Minerals North America
Kemet Inc. WorleyParsons

Committee list

Chair – Aleksander Roudnev, Weir Minerals North America
Vice-Chair – Robert Visintainer, GIW Industries, Inc. (A KSB Company)

Committee members

Henri Azibert Fluid Sealing Association
Jack Bagain John Crane Inc.
Marc Buckler Flowserve Corporation
Charles Cappellino (retired) ITT - Industrial Process
Ralph Gabriel (retired) John Crane Inc.
Thomas Grove AESSEAL Inc.
Thiru Veeraraghavan A.W. Chesterton Company

Alternates

James Cairns A.W. Chesterton Company
Michael Cugal Weir Minerals North America
Randy Kosmicki Weir Minerals North America
Brian Prochaska GIW Industries, Inc. (A KSB Company)
12 Rotodynamic centrifugal slurry pumps

12.1 Introduction

This standard covers rotodynamic slurry pumps used for pumping and/or transporting mixtures of solids and liquids or so-called “slurries.” Slurries are often abrasive and, if not considered, may cause high wear and shortened life of pumps. Unlike clear water, slurries alter the performance of the pumps and cause wear to the wet-end parts. Below a certain velocity, some slurries also settle out in the piping, causing blockages. These differences are such that if they are not taken into account, the pumps will not work satisfactorily or not at all. For this reason, this standard includes information about slurries and their effects, which is necessary to select, apply, operate, and maintain slurry pumps of different designs and materials of construction.

12.1.1 Scope

This standard is for rotodynamic centrifugal, single-stage, overhung impeller slurry pumps, horizontal and vertical of industrial types used for abrasive slurries, herein referred to as slurry pumps. It includes types and nomenclature; definitions; design and application; installation, operation and maintenance; and guidelines on testing.

12.1.2 Purpose

This standard is normative and sets out requirements, recommendations, and statements to define, select, apply, operate, and maintain slurry pumps. Requirements convey criteria to be fulfilled if compliance with the document is to be claimed and from which no deviation is permitted. Recommendations convey that, among several possibilities, one is particularly suitable, without excluding or prohibiting others.

12.1.3 Pump types and nomenclature

Figure 12.1.3 shows classifications of rotodynamic slurry pumps based on mechanical configuration. Figures 12.1.13a–12.1.13p show typical constructions commonly used for each pump type. Lowercase letter part designations are for different manufacturer variants of the same type. Other variations are also acceptable.

While there are no rigid rules about where different mechanical configurations are to be applied, initial cost, wear parts (maintenance) cost, and arrangement convenience are such that mechanical configurations tend to be aligned to certain services.

Separately coupled, frame mounted mechanical configurations are preferred for the heavier solids transport wear services (described as class 3 and class 4 in Section 12.3.4.2). Hard metal pumps are preferred for services involving the largest sizes of solids. Elastomer pumps, by virtue of the needed support, must be of the lined type.

Cantilevered wet pit pumps are used in plant mining process service (described as class 3 in Section 12.3.4.2) but are more widely used in the lighter-class wear services (described as class 1 and class 2 in Section 12.3.4.2) for cleanup and lower concentration slurries. These pumps usually are limited to no more than 300-mm (12-in) discharge size.

Close-coupled submersible pump types are similar to the cantilevered wet pit pumps, mostly used in cleanup services, but there may be areas where they are used as process pumps. These are also limited to smaller discharge sizes.