American National Standard for

Rotodynamic Pumps

for Nomenclature and Definitions
American National Standard for
Rotodynamic Pumps
for Nomenclature and Definitions

Sponsor
Hydraulic Institute
www.Pumps.org

Approved April 9, 2019
American National Standards Institute, Inc.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>14.1</td>
<td>Types and nomenclature</td>
<td>1</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>14.1.1.1</td>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>14.1.1.2</td>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Definition of rotodynamic pump</td>
<td>2</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Types of rotodynamic pumps</td>
<td>2</td>
</tr>
<tr>
<td>14.1.3.1</td>
<td>Overhung impeller type (OH)</td>
<td>2</td>
</tr>
<tr>
<td>14.1.3.1.1</td>
<td>Flexibly coupled (OH0, OH1, OH2, OH3, and OH6)</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.1.2</td>
<td>Rigidly coupled/short coupled (OH4 and OH13)</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.1.2.1</td>
<td>Rigidly coupled</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.1.2.2</td>
<td>Short-coupled</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.1.3</td>
<td>Close-coupled (OH5, OH6, OH7, and OH8)</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.1.3.1</td>
<td>High-speed integral, gear-driven pumps (OH6)</td>
<td>4</td>
</tr>
<tr>
<td>14.1.3.2</td>
<td>Impeller between-bearing type (BB)</td>
<td>5</td>
</tr>
<tr>
<td>14.1.3.2.1</td>
<td>One and two stage with axially split casing (BB1)</td>
<td>5</td>
</tr>
<tr>
<td>14.1.3.2.2</td>
<td>One and two stage with radially split casing (BB2)</td>
<td>5</td>
</tr>
<tr>
<td>14.1.3.2.3</td>
<td>Multistage with axially split casing and volute (BB3)</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.2.4</td>
<td>Multistage with radially split casing held in place with tie bolts (BB4)</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.2.5</td>
<td>Multistage with radially split casing external casing and internal pumping elements (BB5)</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.3</td>
<td>Impeller vertically suspended type (VS)</td>
<td>6</td>
</tr>
<tr>
<td>14.1.3.3.1</td>
<td>Single casing</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.3.1.1</td>
<td>Submersible (VS0)</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.3.1.2</td>
<td>Discharge through column (VS1, VS2, and VS3)</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.3.1.3</td>
<td>Separate Discharge (VS4 and VS5)</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.3.2</td>
<td>Double casing (VS6, VS7, and VS8)</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.4</td>
<td>Regenerative turbine type (RT)</td>
<td>8</td>
</tr>
<tr>
<td>14.1.3.5</td>
<td>Circulator pumps (CP)</td>
<td>9</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>14.1.3.5.1.1</td>
<td>Close-coupled circulator pumps (CP1 and CP2)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.5.1.2</td>
<td>Flexibly coupled circulator pumps (CP3)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.6</td>
<td>Hydraulic power recovery turbine</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7</td>
<td>Pumps of other configurations</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.1</td>
<td>Casing/Impeller Types</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.1.1</td>
<td>Diffuser, vaned (a)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.1.3</td>
<td>Volute (b)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.1.4</td>
<td>Axial (c)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.1.5</td>
<td>Pitot Tube (d)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.2</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.2.1</td>
<td>In-line (std)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.2.2</td>
<td>End Suction (g)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.3</td>
<td>Self-priming (h)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.4</td>
<td>Sealless (i)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.4.1</td>
<td>Magnetic Drive</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.4.3</td>
<td>Canned motor</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.5</td>
<td>Multistage (j)</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.6</td>
<td>Rotodynamic pump types – overhung impeller</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.7</td>
<td>Rotodynamic pump types – vertically suspended</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.8</td>
<td>Rotodynamic pump types – between bearing</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.9</td>
<td>Rotodynamic pump types – regenerative turbine</td>
<td></td>
</tr>
<tr>
<td>14.1.3.7.10</td>
<td>Rotodynamic pump types – circulator pump</td>
<td></td>
</tr>
<tr>
<td>14.1.4</td>
<td>Impeller Designs</td>
<td></td>
</tr>
<tr>
<td>14.1.4.1</td>
<td>Specific speed (n_s), type number (K), and suction specific speed (S)</td>
<td></td>
</tr>
<tr>
<td>14.1.4.1.1</td>
<td>Specific Speed</td>
<td></td>
</tr>
<tr>
<td>14.1.4.1.2</td>
<td>Type Number</td>
<td></td>
</tr>
<tr>
<td>14.1.4.1.3</td>
<td>Suction Specific Speed</td>
<td></td>
</tr>
<tr>
<td>14.1.4.2</td>
<td>Radial flow</td>
<td></td>
</tr>
<tr>
<td>14.1.4.3</td>
<td>Francis vane (modified radial flow)</td>
<td></td>
</tr>
<tr>
<td>14.1.4.4</td>
<td>Mixed flow</td>
<td></td>
</tr>
<tr>
<td>14.1.4.5</td>
<td>Axial flow</td>
<td></td>
</tr>
</tbody>
</table>
14.1.4.6 Vortex (recessed impeller) type ... 21
14.1.5 Discharge casing design .. 21
14.1.5.1 Volute .. 22
14.1.5.2 Concentric (circular) casing .. 22
14.1.5.2.1 Modified concentric casing .. 22
14.1.5.3 Vaned diffuser/collector .. 22
14.1.5.3.1 Bowl and stage casing .. 22
14.1.6 Construction drawings .. 22
14.1.7 General information .. 62
14.1.7.1 Size of a rotodynamic pump .. 62
14.1.7.2 Definition of duplicate performance pump 63
14.1.7.3 Definition of dimensionally interchangeable pump 63
14.1.7.4 Definition of identical pump (performance and dimensional) 63
14.1.7.5 Definitions for major pump sub-assemblies .. 63
14.1.7.5.1 Overhung pumps .. 63
14.1.7.5.1.1 Liquid end (or wet end assembly) .. 63
14.1.7.5.1.2 Power end (or frame assembly) .. 64
14.1.7.5.1.3 Back pull-out assembly .. 64
14.1.7.5.1.4 Bare rotor .. 65
14.1.7.5.1.5 Rotating assembly .. 65
14.1.7.6 Bowl assembly .. 65
14.1.7.7 Position of casing .. 65
14.1.7.8 Rotation of shaft .. 66
14.1.7.8.1 Gear driven .. 67
14.1.7.8.2 Double-extended shaft .. 67
14.1.7.9 Special case ASME/ANSI B73.1, C-frame adapter 67
14.1.7.10 Drivers for vertically suspended pumps .. 68
14.1.7.10.1 Vertical solid shaft driver .. 68
14.1.7.10.2 Vertical hollow shaft driver .. 68
14.1.7.11 Open/enclosed line shaft .. 68
14.1.7.12 Vertically suspended pump length .. 69
14.1.7.12.1 Total pump length ... 69
14.1.7.12.2 Pump setting ... 69
14.1.8 Pump nomenclature ... 70
14.1.8.1 Definitions - part names ... 70
14.1.8.2 Overhung and between-bearing pump dimensions 80
14.2 Definitions, terminology, and symbols .. 86
14.2.1 Volume rate of flow (Q) .. 89
14.2.1.1 BEP rate of flow (Q_{opt}) .. 89
14.2.1.2 Minimum continuous stable flow (Q_{min all stable}) 90
14.2.1.3 Minimum continuous thermal flow (Q_{min thermal}) 90
14.2.1.4 Maximum allowable flow (Q_{max all}) 90
14.2.2 Speed (n) ... 90
14.2.2.1 Maximum allowable continuous speed (n_{max all}) 90
14.2.2.2 Minimum allowable continuous speed (n_{min all}) 90
14.2.2.3 Rated speed (n_r) .. 90
14.2.3 Head (h) [H] ... 90
14.2.3.1 Gauge head (h_{g}) [H_{ga}]. ... 90
14.2.3.2 Velocity head (h_v) .. 90
14.2.3.3 Elevation head (Z) [H_{stat}] .. 91
14.2.3.4 NPSH datum plane .. 91
14.2.3.5 Total suction head (h_s), open suction 91
14.2.3.6 Total suction head (h_s), closed suction 91
14.2.3.7 Total discharge head (h_d) .. 92
14.2.3.8 Total head (H) [H_{tx}] ... 92
14.2.3.9 Bowl assembly total head (H_{ba}) 92
14.2.3.10 Atmospheric head (h_{atm}) .. 92
14.2.3.11 Friction head (h_f or h_j) ... 92
14.2.4 Condition points ... 93
14.2.4.1 Rated condition point (Q_r) or (H_r) 93
14.2.4.2 Specified condition point .. 93
14.2.4.3 Normal condition point (Q_N) or (H_N) 93
14.2.4

- **14.2.4.4**: Best efficiency point (BEP) .. 93
- **14.2.4.5**: Shutoff (SO) .. 93
- **14.2.4.6**: Operating regions .. 93
 - **14.2.4.6.1**: Preferred operating region (POR) 93
 - **14.2.4.6.2**: Allowable operating region (AOR) 93

14.2.5

- **14.2.5**: Suction conditions .. 94
 - **14.2.5.1**: Submerged suction ... 94
 - **14.2.5.2**: Flooded suction .. 94
 - **14.2.5.3**: Static suction lift (l_s) ... 94
 - **14.2.5.4**: Net positive suction head (NPSH) 94
 - **14.2.5.5**: Net positive suction head available (NPSHA). 94
 - **14.2.5.6**: Net positive suction head required (NPSHR) 94
 - **14.2.5.7**: Net positive suction head resulting in 3% loss of total head (NPSH3) 94
 - **14.2.5.8**: Maximum suction pressure ($p_{s\ max}$) [p1 max op or p1 max all] .. 95

14.2.6

- **14.2.6**: Power .. 95
 - **14.2.6.1**: Electric motor input power (P_{mot}) [P1] 95
 - **14.2.6.2**: Pump input power (P_p) [P] .. 95
 - **14.2.6.3**: Bowl assembly input power (P_{ba}) 95
 - **14.2.6.4**: Pump output power (P_w) [Pu] .. 95
 - **14.2.6.5**: Overall efficiency (η_{OA}) .. 95
 - **14.2.6.6**: Pump efficiency (η_p) ... 96
 - **14.2.6.7**: Bowl assembly efficiency (η_{ba}) 96
 - **14.2.6.8**: Pump pressures .. 96
 - **14.2.6.8.1**: Working pressure (p_{d}) [p2 max op] 96
 - **14.2.6.8.2**: Maximum allowable working pressure (MAWP) 96
 - **14.2.6.8.3**: Field-test pressure .. 96
 - **14.2.6.8.4**: Rated discharge pressure ... 96
 - **14.2.6.9**: Impeller balancing ... 96
 - **14.2.6.9.1**: Single-plane balancing (formerly called static balancing). 96
 - **14.2.6.9.2**: Two-plane balancing (formerly called dynamic balancing) 96
Appendix A ... 97
Appendix B ... 98
Appendix C ... 105
Appendix D ... 107

Figures
14.1.3 — Rotodynamic pump types ... 2
14.1.3.7 — Typical vertical pump impeller types with rings (casing and/or impeller) ... 17
14.1.4.1 — General impeller types ... 20
14.1.4.2 — Double suction radial flow impeller ... 20
14.1.4.4 — Mixed-flow impeller ... 21
14.1.4.5 — Axial-flow impeller ... 21
14.1.4.6 — Vortex (recessed impeller) type ... 21
14.1.6a — Overhung impeller – flexibly coupled – frame mounted – single stage ... 23
14.1.6b — Overhung impeller – flexibly coupled – frame mounted – single-stage – lined pump ... 24
14.1.6c — Overhung impeller – flexibly coupled – horizontal – axial flow – single-stage ... 25
14.1.6d — Pitot tube pump ... 26
14.1.6e — Overhung impeller – flexibly coupled – foot mounted – single-stage – stock pump ... 27
14.1.6f — Overhung impeller – flexibly coupled – foot mounted – single-stage ... 28
14.1.6g — Overhung impeller – flexibly coupled – foot mounted – single-stage – ASME B73.1 ... 29
14.1.6h — Overhung impeller – flexibly coupled – foot mounted – self-priming – single-stage ... 30
14.1.6i — Overhung impeller – flexibly coupled – centerline mounted – single-stage – API 610 ... 31
14.1.6k — Overhung impeller – flexibly coupled – vertical – end suction – single-stage ... 33
14.1.6l — Overhung impeller – rigidly coupled – vertical – in-line – single-stage ... 34
14.1.6m — Overhung impeller – close-coupled – vertical – in-line – single-stage (showing seal and packing) ... 35
14.1.6o — Overhung impeller – close-coupled – high-speed integral gear – single-stage ... 37
14.1.6s — Between bearings – single-stage – axially split pump ... 41
14.1.6t — Between bearings – single-stage – radially split pump ... 42
14.1.6u — Between bearings – multistage – axially split pump ... 43
14.1.6v — Between bearings – multistage – radially split – single casing pump ... 44
14.1.6w — Between bearings – multistage – radially split – double casing pump ... 45
14.1.6x — Regenerative turbine – overhung side channel ... 46
14.1.6y — Regenerative turbine – overhung peripheral ... 47
14.1.6z — Regenerative turbine – between bearings - peripheral ... 48
14.1.6aa — Close-coupled sealless with canned motor ... 49
14.1.6bb — Close-coupled horizontal in-line .. 49
14.1.6cc — Flexibly coupled horizontal in-line. ... 50
14.1.6dd — Vertically suspended – single casing – submersible pump .. 51
14.1.6ee — Vertically suspended – single casing – discharge through column – deep-well (set) pumps 52
14.1.6ff — Vertically suspended – single casing – discharge through column – short-set pump 53
14.1.6gg — Vertically suspended – single casing – discharge through column – short-set - mixed flow pump 54
14.1.6hh — Vertically suspended – single casing – discharge through column – volute pump 55
14.1.6ii — Vertically suspended – single casing – discharge through column – axial flow pump 56
14.1.6jj — Vertically suspended – single casing – separate discharge – line shaft pump. 57
14.1.6kk — Vertically suspended – single casing – separate discharge – cantilever pump 58
14.1.6ll — Vertically suspended – double casing – diffuser pump ... 59
14.1.6mm — Vertically suspended – double casing – volute/diffuser multistage pump 60
14.1.6nn — Vertically suspended – double casing – volute multistage pump .. 61
14.1.6oo — Vertically suspended – in-line casing diffuser ... 62
14.1.7.5.1.1 — Liquid end (or wet end) assembly .. 63
14.1.7.5.1.2 — Power end (or frame assembly) ... 64
14.1.7.5.1.3 — Back pull-out assembly ... 65
14.1.7.7 — Position of casing and shaft rotation .. 66
14.1.7.8a — Horizontal pump – shaft rotation (CW rotation) ... 66
14.1.7.8b — Vertical pump – shaft rotation (CW rotation) .. 67
14.1.7.9 — Pump with C-frame motor adapter, short coupled .. 68
14.1.7.12 — Vertically suspended pump dimensions .. 69
14.1.8.2a — Overhung impeller – flexibly coupled – single-stage – frame mounted .. 80
14.1.8.2b — Overhung impeller – flexibly coupled – single-stage – frame mounted – pump on base plate 81
14.1.8.2c — Overhung impeller – flexibly coupled – single-stage – centerline mounted 81
14.1.8.2d — Overhung impeller – flexibly coupled – single-stage – centerline mounted – pump on baseplate . . . 82
14.1.8.2e — Overhung impeller – flexibly coupled – single-stage – centerline mounted (top suction) 82
14.1.8.2f — Overhung impeller – flexibly coupled – single-stage – centerline mounted – pump on baseplate (top suction) ... 83
14.1.8.2g — Impeller between bearings – flexibly coupled – single-stage – axial (horizontal) split case – pump on baseplate ... 83
14.1.8.2h — Impeller between bearings – flexibly coupled – single-stage – axial (horizontal) split case 84
14.1.8.2i — Overhung impeller – close-coupled – single-stage – end suction .. 84
14.1.8.2k — Overhung impeller – flexibly coupled – vertical – end suction – single-stage – integral driver support ... 85
14.1.8.2l — Overhung impeller – close-coupled – single-stage – vertical end suction 86
14.2.3.4 — Datum elevation for various pump designs at eye of first-stage impeller 91
14.2.4.6.2 — Performance curve for rotodynamic pumps .. 93
B.1 — Dimensions for types JM and JP, alternating current, face-mounting, close-coupled pump motors having rolling element contact bearings. (This figure relates to Tables B.1 and B.2.) 100
B.4 — Standard dimensions for HI – NEMA type HP and HPH vertical, solid-shaft motors 103
B.5 — Standard dimensions for HI – NEMA vertical hollow-shaft motors 104

Tables
14.1.1 – Rotodynamic pump type designations cross reference ... 1
14.1.3.1 – Rotodynamic pump types – overhung .. 3
14.1.3.2 – Rotodynamic pump types - between-bearing ... 5
14.1.3.3 – Rotodynamic pump types - vertically suspended .. 7
14.1.3.4 – Rotodynamic pump types – regenerative turbine type .. 9
14.1.3.5 – Rotodynamic pump types – circulator pumps ... 9
14.1.3.7 – Rotodynamic pump sub-classifications .. 11
14.1.8.1a – Rotodynamic pump nomenclature - alphabetical listing .. 70
14.1.8.1b – Rotodynamic pump nomenclature - numerical listing ... 78
14.2a – Principal symbols .. 86
14.2b – Subscripts ... 88
B.3 – provides open drip-proof frame selections. .. 98
B.1 – Dimensions for type JM, alternating current, face-mounting, close-coupled pump motors (US customary units) ... 99
B.2 – Dimensions for type JP, alternating current, face-mounting, close-coupled pump motors (US customary units) ... 100
B.2 – Dimensions for type JP, alternating current, face-mounting, close-coupled pump motors (US customary units) ... 101
B.3 – Open drip-proof frame selections .. 101
B.4 – Standard dimensions for HI – NEMA type HP and HPH vertical solid-shaft motors (US customary units) ... 102
B.5 – Dimensions for vertical hollow-shaft driver couplings (US customary units) 103
Foreword (Not part of Standard)

Purpose and aims of the Hydraulic Institute

The purpose and aims of the Hydraulic Institute (HI) are to promote the advancement of the pump manufacturing industry and further the interests of the public, and to this end, among other things:

a) Develop and publish standards
b) Address pump systems
c) Expand knowledge and resources
d) Educate the marketplace
e) Advocate for the industry.

Purpose of Standards and Guidelines

a) HI Standards and Guidelines are adopted in the public interest and are designed to help eliminate misunderstandings between the manufacturer, the purchaser, and/or the user and to assist the purchaser in selecting and obtaining the proper product for a particular need.
b) Use of HI Standards and Guidelines is completely voluntary. Existence of HI Standards does not in any respect preclude a member from manufacturing or selling products not conforming to the standards.

Definition of a Standard of the Hydraulic Institute

Quoting from Article XV, Standards, of the By-Laws of the Institute, Section B:

“An Institute Standard defines the product, material, process or procedure with reference to one or more of the following: nomenclature, composition, construction, dimensions, tolerances, safety, operating characteristics, performance, quality, rating, testing and service for which designed.”

Definition of a Hydraulic Institute Guideline

An HI Guideline is not normative. The guideline is tutorial in nature to help the reader better understand the subject matter.

Comments from users

Comments from users of this standard are appreciated to help HI prepare even more useful future editions. Questions arising from the content of this standard may be directed to the HI Technical Director. If appropriate, the inquiry is then directed to the appropriate technical committee for provision of a suitable answer.

Revisions

American National Standards of the Hydraulic Institute (ANSI/HI) are subject to constant review, and revisions are undertaken whenever it is found necessary because of new developments and progress in the art. If no revisions are made for 5 years, the standards are reaffirmed using the ANSI canvass procedure.

Disclaimer

This document was prepared by an HI committee and approved by following ANSI essential requirements. Neither HI, HI committees, nor any person acting on behalf of HI 1) makes any warranty, expressed or implied, with respect to the use of any information, apparatus, method, or process disclosed in this document or guarantees that such may not infringe privately owned rights; or 2) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this guideline. HI is in no way
responsible for any consequences to an owner, operator, user, or anyone else resulting from reference to the content of this document, its application, or use.

This document does not contain a complete statement of all requirements, analyses, and procedures necessary to ensure safe or appropriate selection, installation, testing, inspection, and operation of any pump or associated products. Each application, service, and selection is unique with process requirements that shall be determined by the owner, operator, or its designated representative.

Units of measurement

Metric units of measurement are used, and corresponding US customary units appear in parentheses. Charts, graphs, and sample calculations are also shown in both metric and US customary units. Because values given in metric units are not exact equivalents to values given in US customary units, it is important that the selected units of measure to be applied be stated in reference to this standard. If no such statement is provided, metric units shall govern.

Consensus

Consensus for this ANSI/HI Standard was achieved by use of the canvass method. The following organizations, recognized as having an interest in the standardization of pumps, were contacted prior to the approval of this revision of the standard. Inclusion in this list does not necessarily imply that the organization concurred with the submittal of the proposed standard to ANSI.

4B Engineering
David McKinstry, Retired
DuPont
Fluid Sealing Association
GM BluePlan Engineering
JK Muir LLC
Kemet Inc.
Las Vegas Valley Water District
Outotec Canada Ltd.
Pentair, Berkeley

Pentair, Fairbanks Nijhuis
Riga Technical University
Rotating Equipment Repair
Sulzer
Syncrude Canada Ltd.
Taco Inc
Weir Floway, Inc.
Weir Minerals North America
Westinghouse Electric Co.
Xylem – Applied Water Systems

Committee list

Although this standard was processed and approved for submittal to ANSI by the canvass method, a working committee met many times to facilitate its development. At the time it was developed, the committee had the following members:

Co-Chair – Michael Mueller, Flowserve Corporation
Co-Chair – Albert Ticknor, III, P.E., National Pump Company

Committee Members
Edison Brito
Michael Coussens
Christopher Felix (Alternate)
Mark Heiser (Alternate)
Al Iseppon
Lane Larsen
Patricia McCarthy
Craig Redmond
Paul Ruzicka
Steve Thompson
James Volk
Jared Wageman
Jamie Watkins
Clint Zentic

Company
PSG, a Dover Company
Peerless Pump Company
Xylem Inc. – Applied Water Systems
Xylem Inc. – Applied Water Systems
Pentair – Berkeley
Weir Specialty Pumps
Xylem Inc. – Water Solutions
Gorman-Rupp, Mansfield Division
Xylem Inc. – Applied Water Systems
TACO, Inc.
Franklin Electric Company, Inc.
Sundyne LLC
Crane Pumps & Systems, Inc.
SULZER
14 Rotodynamic pumps

14.1 Types and nomenclature

14.1.1 Introduction

Symbols are used throughout this standard to identify the pump. The convention is to define the term in text, followed by the HI symbol in parenthesis (xx) and, when different, the ISO symbol in brackets [xx].

ANSI/HI Standards for Nomenclature and Definitions have historically been subdivided into ANSI/HI 1.1-1.2 Rotodynamic Centrifugal Pumps for Nomenclature and Definitions and ANSI/HI 2.1-2.2 Rotodynamic Vertical Pumps for Radial, Mixed and Axial Flow Types for Nomenclature and Definitions. The demarcation between the two categories is determined by the arrangement of the hydraulic configuration (impeller, casing, bowl, or diffuser). However, in each case they have shared physical features and hydraulic functions that are better addressed together rather than separately. Every effort has been made to include and expand all the information contained in these previous standard into a single resource. The result is this single source of nomenclature and definitions information for the pump community.

The primary pump designations have been simplified and a suffix sub-classification has been created to provide greater refinement when needed. The majority of pump designations remained unchanged and in harmony with the API 610 standard. A cross reference table for the designations is below.

<table>
<thead>
<tr>
<th>1.1-1.2/2.1-2.2</th>
<th>14.1-14.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH00</td>
<td>OH0c</td>
</tr>
<tr>
<td>OH0</td>
<td>OH0</td>
</tr>
<tr>
<td>OH1</td>
<td>OH1</td>
</tr>
<tr>
<td>OH1A</td>
<td>OH1h</td>
</tr>
<tr>
<td>OH2</td>
<td>OH2</td>
</tr>
<tr>
<td>OH3</td>
<td>OH3</td>
</tr>
<tr>
<td>OH3A</td>
<td>OH3g</td>
</tr>
<tr>
<td>OH4</td>
<td>OH4</td>
</tr>
<tr>
<td>OH5</td>
<td>OH5g</td>
</tr>
<tr>
<td>OH6</td>
<td>OH6</td>
</tr>
<tr>
<td>OH7</td>
<td>OH7</td>
</tr>
<tr>
<td>OH8A</td>
<td>OH8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1-1.2/2.1-2.2</th>
<th>14.1-14.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH8B</td>
<td>OH8b</td>
</tr>
<tr>
<td>OH9</td>
<td>OH7i</td>
</tr>
<tr>
<td>OH10</td>
<td>OH5i</td>
</tr>
<tr>
<td>OH11</td>
<td>OH1i</td>
</tr>
<tr>
<td>OH12</td>
<td>OH7i</td>
</tr>
<tr>
<td>OM1</td>
<td>OH7j</td>
</tr>
<tr>
<td>OM2</td>
<td>OH1j</td>
</tr>
<tr>
<td>OM3</td>
<td>OH13j</td>
</tr>
<tr>
<td>Pitot Tube</td>
<td>OH0d</td>
</tr>
<tr>
<td>BB1</td>
<td>BB1</td>
</tr>
<tr>
<td>BB2</td>
<td>BB2</td>
</tr>
<tr>
<td>BB3</td>
<td>BB3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1-1.2/2.1-2.2</th>
<th>14.1-14.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB4</td>
<td>BB4</td>
</tr>
<tr>
<td>BB5</td>
<td>BB5</td>
</tr>
<tr>
<td>VS0</td>
<td>VS0</td>
</tr>
<tr>
<td>VS1</td>
<td>VS1</td>
</tr>
<tr>
<td>VS2</td>
<td>VS2</td>
</tr>
<tr>
<td>VS3</td>
<td>VS3</td>
</tr>
<tr>
<td>VS4</td>
<td>VS4</td>
</tr>
<tr>
<td>VS5</td>
<td>VS5</td>
</tr>
<tr>
<td>VS6</td>
<td>VS6</td>
</tr>
<tr>
<td>VS7</td>
<td>VS7</td>
</tr>
<tr>
<td>VS7a</td>
<td>VS7j</td>
</tr>
<tr>
<td>VS8</td>
<td>VS8</td>
</tr>
</tbody>
</table>

14.1.1.1 Purpose

This standard is a normative document for nomenclature and definitions for rotodynamic pump for various pumps configurations and services.

14.1.1.2 Scope

This standard is for types, nomenclature, and definitions of rotodynamic pumps with radial, mixed flow, and axial flow impellers, as well as regenerative turbine, Pitot tube, vertical diffuser, submersible motor deep-well and short-set pumps, commonly defined as vertically suspended rotor and vertical overhung impeller types (that may be driven by vertical electric motors or horizontal engines with right-angle gears) of all industrial/commercial types.