American National Standard for

Rotodynamic Pumps
– Guideline for Dynamics of Pumping Machinery

Hydraulic Institute
6 Campus Drive
First Floor North
Parsippany, New Jersey
07054-4406
www.Pumps.org
This page intentionally blank.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>9.6.8</td>
<td>Guideline for dynamics of pumping machinery</td>
<td>1</td>
</tr>
<tr>
<td>9.6.8.1</td>
<td>Introduction and scope</td>
<td>1</td>
</tr>
<tr>
<td>9.6.8.1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>9.6.8.1.2</td>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>9.6.8.2</td>
<td>Overview and relevance of dynamics considerations</td>
<td>7</td>
</tr>
<tr>
<td>9.6.8.3</td>
<td>When an analysis is recommended</td>
<td>11</td>
</tr>
<tr>
<td>9.6.8.3.1</td>
<td>System complexity and unit size</td>
<td>11</td>
</tr>
<tr>
<td>9.6.8.3.2</td>
<td>Considerations in the specification of dynamic analysis</td>
<td>16</td>
</tr>
<tr>
<td>9.6.8.4</td>
<td>Introduction to analysis levels</td>
<td>27</td>
</tr>
<tr>
<td>9.6.8.4.1</td>
<td>Analysis level definitions</td>
<td>33</td>
</tr>
<tr>
<td>9.6.8.5</td>
<td>Level 1 analysis (simple methods)</td>
<td>36</td>
</tr>
<tr>
<td>9.6.8.5.1</td>
<td>Level 1 recommended analyses</td>
<td>36</td>
</tr>
<tr>
<td>9.6.8.5.2</td>
<td>Level 1 analysis methods</td>
<td>37</td>
</tr>
<tr>
<td>9.6.8.5.3</td>
<td>Pump rotor vibration</td>
<td>38</td>
</tr>
<tr>
<td>9.6.8.5.4</td>
<td>Pump rotor critical speed</td>
<td>38</td>
</tr>
<tr>
<td>9.6.8.5.5</td>
<td>The first transverse (lateral) critical speed</td>
<td>39</td>
</tr>
<tr>
<td>9.6.8.5.6</td>
<td>For the angular or torsional case</td>
<td>41</td>
</tr>
<tr>
<td>9.6.8.5.7</td>
<td>Reed critical frequency (RCF) of vertical structures</td>
<td>42</td>
</tr>
<tr>
<td>9.6.8.6</td>
<td>Level 2 analysis (intermediate methods)</td>
<td>44</td>
</tr>
<tr>
<td>9.6.8.6.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>9.6.8.6.2</td>
<td>Individual level 2 analyses: methodology, interpretation of results and validation</td>
<td>44</td>
</tr>
<tr>
<td>9.6.8.7</td>
<td>Level 3 analysis (advanced methods)</td>
<td>53</td>
</tr>
<tr>
<td>9.6.8.7.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>9.6.8.7.2</td>
<td>Level 3 analyses: methodology, interpretation of results and validation</td>
<td>53</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Definitions of terms</td>
<td>58</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Input data requirements</td>
<td>64</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Vertical structure natural frequency considerations</td>
<td>68</td>
</tr>
<tr>
<td>C.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>C.2</td>
<td>Reed frequency characteristics of vertical structures involving motors</td>
<td>68</td>
</tr>
<tr>
<td>C.3</td>
<td>Motor reed frequency properties</td>
<td>68</td>
</tr>
<tr>
<td>C.4</td>
<td>Use of motor reed frequency properties in a vertical pump/motor structure reed frequency calculation, level 1 analysis</td>
<td>69</td>
</tr>
<tr>
<td>C.5</td>
<td>Use of motor reed frequency properties in level 2 or level 3 analyses of vertical structures</td>
<td>70</td>
</tr>
<tr>
<td>C.6</td>
<td>Graphical depiction of vertical pump/motor structure reed frequency versus motor reed frequency</td>
<td>71</td>
</tr>
<tr>
<td>C.7</td>
<td>Job-specific motor reed frequency values for dynamic analysis</td>
<td>72</td>
</tr>
<tr>
<td>C.8</td>
<td>Practical considerations – vertical pump/motor structures</td>
<td>72</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Vertical motor reed frequency considerations</td>
<td>76</td>
</tr>
<tr>
<td>D.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>D.2</td>
<td>Motor reed frequency properties</td>
<td>76</td>
</tr>
<tr>
<td>D.3</td>
<td>Typical stated motor reed frequency values</td>
<td>78</td>
</tr>
</tbody>
</table>
D.4 Motor reed critical frequency impact test guidelines ... 80
D.5 Job-specific motor reed frequency tested values for dynamic analysis 83

Appendix E Dynamic analysis sample specifications .. 84
E.1 Instructions for specification writers ... 84
E.2 Separation margin ... 84
E.3 Dynamic analysis sample specification wording ... 86

Appendix F Dynamic analysis sample specifications, motor reed critical frequency 90
F.1 Purpose ... 90
F.2 Scope ... 90
F.3 Instructions to specification writers ... 90
F.4 Instructions to motor purchasers .. 90
F.5 Sample specification ... 90

Appendix G Analysis reporting format .. 92

Appendix H Numerical analysis recommendations ... 94
H.1 Typical applications ... 94
H.2 Model methodology ... 94

Appendix I Bibliography ... 97

Appendix J Index ... 98

Figures
9.6.8.1.1.1a — Flowchart describing workflow ... 3
9.6.8.1.1.1b — Flowchart referencing applicable sections of guideline 4
9.6.8.1.1.1c — Checklist to facilitate use of guideline ... 5
9.6.8.1.2a — Rotodynamic pump types - overhung ... 8
9.6.8.1.2b — Rotodynamic pump types - between bearings 9
9.6.8.1.2c — Rotodynamic pump types - vertically suspended 10
9.6.8.3.1a — Foundation rigidity, horizontal pump structures 14
9.6.8.3.1b — Foundation rigidity, vertical pump structures using motor CG location 14
9.6.8.3.1c — Foundation rigidity, vertical pump structures using top motor bearing location 15
9.6.8.4a — Typical Campbell diagram for lateral critical speeds 31
9.6.8.4b — Typical mode shape diagram ... 32
9.6.8.4c — Typical Campbell diagram for torsional critical speeds 34
9.6.8.5.2 — Natural frequency versus static deflection .. 37
9.6.8.5.4 — Rotor first and second critical speeds .. 38
9.6.8.5.5 — Rotor critical speed with shaft of negligible mass and several concentrated masses 39
9.6.8.5.6 — Simple horizontal centrifugal pump system .. 41
9.6.8.6.2.1.3 — Rotodynamic critical speed map .. 48
C.1 — Vertical motor structures .. 69
C.2 — System RCF (cpm) vs. motor RCF (cpm) and motor center of gravity deflection component 72
C.3 — Typical vibration signature of discharge head/driver support with driver 73
C.4 — Structural natural frequency is close to the maximum range of operation rpm. 74
C.5 — Structural natural frequency is close to the minimum range of operating rpm 75
D.1 — Static deflection of motor center of gravity ... 76
D.2 — Reed critical frequency versus static deflection .. 77
D.3 — Typical range of stated motor reed frequency versus torque ... 78
D.4 — Typical range of stated motor reed frequency versus motor weight 79
D.5 — Typical range of stated motor reed frequency versus CG height (data trend envelope indicated) ... 79
D.6 — Typical range of stated motor reed frequency versus maximum motor diameter or flange diameter .80
D.7 — Small motor mounting plate structure ... 81
D.8 — Large motor mounting plate structure ... 81
E.1 — Amplification chart .. 85
E.2 — Cambell diagram for variable frequency unit ... 85

Tables
9.6.8.1.1.1 — Work process .. 2
9.6.8.3 — Decision matrix .. 12
9.6.8.3.1 — Uncertainty values .. 13
9.6.8.3.2.2a — Market trends ... 17
9.6.8.3.2.2b — Market considerations, municipal water and wastewater .. 18
9.6.8.3.2.2c — Market considerations, building trades and HVAC .. 19
9.6.8.3.2.2d — Market considerations, electric power industry .. 20
9.6.8.3.2.2e — Market considerations, petroleum industry .. 21
9.6.8.3.2.2f — Market considerations, chemical industry ... 22
9.6.8.3.2.2g — Market considerations, pulp and paper .. 22
9.6.8.3.2.2h — Market considerations, slurry ... 23
9.6.8.3.2.2i — Market considerations, general industry ... 23
9.6.8.3.2.2j — Market considerations, drainage and dewatering .. 24
9.6.8.3.2.2k — Market considerations, irrigation .. 24
9.6.8.3.2.2l — Market considerations, fire .. 25
9.6.8.3.2.2m — Market considerations, flood control .. 25
9.6.8.3.2.2n — Market considerations, water transport ... 26
9.6.8.4 — Analysis complexity levels .. 28
Purpose and aims of the Hydraulic Institute

The purpose and aims of the Institute are to promote the continued growth and well-being of pump users and pump manufacturers and further the interests of the public in such matters as are involved in manufacturing, engineering, distribution, safety, transportation, and other problems of the industry, and to this end, among other things:

a) To develop and publish standards for pumps;
b) To collect and disseminate information of value to its members and to the public;
c) To appear for its members before governmental departments and agencies and other bodies in regard to matters affecting the industry;
d) To increase the amount and to improve the quality of pump service to the public;
e) To support educational and research activities;
f) To promote the business interests of its members but not to engage in business of the kind ordinarily carried on for profit or to perform particular services for its members or individual persons as distinguished from activities to improve the business conditions and lawful interests of all of its members.

Purpose of Standards

1) Hydraulic Institute standards are adopted in the public interest and are designed to help eliminate misunderstandings between the manufacturer, the purchaser and/or the user and to assist the purchaser in selecting and obtaining the proper product for a particular need.

2) Use of Hydraulic Institute standards is completely voluntary. Existence of Hydraulic Institute standards does not in any respect preclude a member from manufacturing or selling products not conforming to the standards.

Definition of a Standard of the Hydraulic Institute

Quoting from Article XV, Standards, of the By-Laws of the Institute, Section B:

“An Institute Standard defines the product, material, process or procedure with reference to one or more of the following: nomenclature, composition, construction, dimensions, tolerances, safety, operating characteristics, performance, quality, rating, testing, and service for which designed.”

Comments from users

Comments from users of this standard will be appreciated, to help the Hydraulic Institute prepare even more useful future editions. Questions arising from the content of this standard may be directed to the Technical Director of the Hydraulic Institute. The inquiry will then be directed to the appropriate technical committee for provision of a suitable answer.

If a dispute arises regarding contents of an Institute publication or an answer provided by the Institute to a question such as indicated above, the point in question shall be sent in writing to the Technical Director of the Hydraulic Institute, to initiate the appeals process.

Revisions

The Standards of the Hydraulic Institute are subject to constant review, and revisions are undertaken whenever it is found necessary because of new developments and progress in the art. If no revisions are made for five years, the standards are reaffirmed using the ANSI canvass procedure.