American National Standard for

Rotodynamic Pumps

for Pump Intake Design

Hydraulic Institute

6 Campus Drive
First Floor North
Parsippany, New Jersey
07054-4406
www.Pumps.org
American National Standard for
Rotodynamic Pumps
for Pump Intake Design

Sponsor
Hydraulic Institute
www.Pumps.org

Approved December 4, 2012
American National Standards Institute, Inc.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>Pump intake design</td>
<td>1</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Design objectives</td>
<td>1</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Intake structures for clear liquids</td>
<td>2</td>
</tr>
<tr>
<td>9.8.2.1</td>
<td>Rectangular intakes</td>
<td>2</td>
</tr>
<tr>
<td>9.8.2.2</td>
<td>Formed suction intakes</td>
<td>8</td>
</tr>
<tr>
<td>9.8.2.3</td>
<td>Circular pump stations (clear liquids)</td>
<td>9</td>
</tr>
<tr>
<td>9.8.2.4</td>
<td>Trench-type intakes (clear liquids)</td>
<td>13</td>
</tr>
<tr>
<td>9.8.2.5</td>
<td>Tanks - pump suction</td>
<td>15</td>
</tr>
<tr>
<td>9.8.2.6</td>
<td>Can vertical turbine pump intakes (clear liquids), including those</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>with submersible motors (refer to Appendix G)</td>
<td></td>
</tr>
<tr>
<td>9.8.2.7</td>
<td>Unconfined intakes (Figure 9.8.2.7)</td>
<td>21</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Intake structures for solids-bearing liquids</td>
<td>23</td>
</tr>
<tr>
<td>9.8.3.1</td>
<td>General</td>
<td>23</td>
</tr>
<tr>
<td>9.8.3.2</td>
<td>Trench-type wet wells for solids-bearing liquids</td>
<td>25</td>
</tr>
<tr>
<td>9.8.3.3</td>
<td>Circular plan wet pit for solids-bearing liquids.</td>
<td>28</td>
</tr>
<tr>
<td>9.8.3.4</td>
<td>Rectangular wet wells for solids-bearing liquids</td>
<td>30</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Physical model studies of intake structures and pump suction piping</td>
<td>32</td>
</tr>
<tr>
<td>9.8.4.1</td>
<td>Need for a physical model study</td>
<td>32</td>
</tr>
<tr>
<td>9.8.4.2</td>
<td>Physical model study objectives</td>
<td>33</td>
</tr>
<tr>
<td>9.8.4.3</td>
<td>Physical model similitude and scale selection</td>
<td>33</td>
</tr>
<tr>
<td>9.8.4.4</td>
<td>Physical model study scope</td>
<td>35</td>
</tr>
<tr>
<td>9.8.4.5</td>
<td>Instrumentation and measuring techniques</td>
<td>36</td>
</tr>
<tr>
<td>9.8.4.6</td>
<td>Test plan</td>
<td>38</td>
</tr>
<tr>
<td>9.8.4.7</td>
<td>Acceptance criteria</td>
<td>39</td>
</tr>
<tr>
<td>9.8.4.8</td>
<td>Report preparation</td>
<td>39</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Inlet bell design diameter (D)</td>
<td>39</td>
</tr>
<tr>
<td>9.8.5.1</td>
<td>General</td>
<td>39</td>
</tr>
<tr>
<td>9.8.5.2</td>
<td>Objective</td>
<td>39</td>
</tr>
<tr>
<td>9.8.6</td>
<td>Required submergence for minimizing surface vortices</td>
<td>43</td>
</tr>
<tr>
<td>9.8.6.1</td>
<td>General</td>
<td>43</td>
</tr>
<tr>
<td>9.8.6.2</td>
<td>Controlling parameters</td>
<td>43</td>
</tr>
<tr>
<td>9.8.6.3</td>
<td>Application considerations</td>
<td>44</td>
</tr>
<tr>
<td>9.8.7</td>
<td>Use of computational fluid dynamics (CFD)</td>
<td>45</td>
</tr>
<tr>
<td>9.8.7.1</td>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>9.8.7.2</td>
<td>Simulation methods</td>
<td>48</td>
</tr>
<tr>
<td>9.8.7.3</td>
<td>Correlation of simulation and experimental results</td>
<td>48</td>
</tr>
<tr>
<td>9.8.7.4</td>
<td>Acceptable uses of computational fluid dynamics (CFD)</td>
<td>48</td>
</tr>
</tbody>
</table>
Appendix A: Remedial measures for problem intakes
- Page 60

Appendix B: Sump volume
- Page 75

Appendix C: Intake basin entrance conditions, trench-type wet wells for solids-bearing liquids
- Page 79

Appendix D: Performance enhancements for trench-type wet wells
- Page 84

Appendix E: Aspects of design of rectangular wet wells for solids-bearing liquids
- Page 89

Appendix F: Suction bell design
- Page 95

Appendix G: Submersible pumps – well motor type
- Page 97

Appendix H: Modification of existing pumping systems
- Page 98

Appendix I: Alternate formed suction intake designs
- Page 99

Appendix J: Rectangular intakes for shallow liquid source
- Page 103

Appendix K: Influence of pump selection on intake design
- Page 107

Appendix L: References
- Page 110

Appendix M: Index
- Page 112

Figures
- **9.8.2.1.4a** — Rectangular intake structure layout
- **9.8.2.1.4b** — Filler wall details for proper bay width
- **9.8.2.2.2** — Formed suction intake
- **9.8.2.3.1a** — Wet-pit duplex sump with pumps offset
- **9.8.2.3.1b** — Wet-pit duplex sump with pumps on centerline
- **9.8.2.3.1c** — Dry-pit/wet-pit duplex sump
- **9.8.2.3.1d** — Wet-pit triplex sump, pumps in line
- **9.8.2.3.1e** — Wet-pit triplex sump, compact
- **9.8.2.3.1f** — Dry-pit/wet-pit triplex sump
- **9.8.2.4.1a** — Trench-type wet well
- **9.8.2.4.1b** — Trench-type wet well with formed suction inlet
- **9.8.2.5.4** — Datum for calculation of submergence
- **9.8.2.5.5** — Definitions of V and D for calculation of submergence
- **9.8.2.6.4** — Open bottom can intakes
- **9.8.2.6.5** — Closed bottom can
- **9.8.2.7** — Unconfined intakes
- **9.8.3.2.2** — Open trench-type wet well
- **9.8.3.3.1a** — Circular wet pit with sloping walls and minimized horizontal floor area (dry-pit pumps)
- **9.8.3.3.1b** — Circular wet pit with sloping walls and minimized horizontal floor area (submersible pumps shown for illustration)
- **9.8.3.3.1c** — Circular wet pit with sloping walls and minimized horizontal floor area (wet-pit pumps shown for illustration)
9.8.3.4.4 — Confined wet-well design ... 31
9.8.4.5a — Classification of free surface and subsurface vortices .. 37
9.8.4.5b — Typical swirl meter .. 38
9.8.5.2a — Inlet bell design diameter (metric units) .. 41
9.8.5.2b — Inlet bell design diameter (US customary units) .. 42
9.8.6.3a — Minimum submergence to minimize free surface vortices (metric units) 46
9.8.6.3b — Minimum submergence to minimize free surface vortices (US customary units) ... 47
A.1 — Examples of approach flow conditions at intake structures and the resulting effect on velocity, all pumps operating .. 62
A.2 — Examples of pump approach flow patterns for various combinations of operating pumps . 63
A.3 — Comparison of flow patterns in open and partitioned sumps 64
A.4 — Effect of trash rack design and location on velocity distribution entering pump bay 64
A.5 — Flow-guiding devices at entrance to individual pump bays ... 65
A.6 — Concentrated influent configuration, with and without flow distribution devices 66
A.7 — Baffling to improve flow pattern downstream from dual flow screen 67
A.8 — Typical flow pattern through a dual flow screen .. 67
A.9 — Improvements to approach flow without diverging sump walls 68
A.10 — Elevation view of a curtain wall for minimizing surface vortices 69
A.11 — Methods to reduce subsurface vortices (examples i – ix) ... 70
A.12 — Combination of remedial corrections ... 71
A.13 — Tank antivortex devices ... 73
A.14 — Tank inflow and outflow configurations ... 74
B.1 — Graphical analysis for liquid-level controllers .. 76
B.2 — Graphical analysis for a “smart” controller ... 78
C.1 — Schematic diagram of approach pipe ... 80
D.1 — Open trench-type wet well hydraulic jump ... 85
D.2 — Open trench–type wet well with inlet baffle ... 85
D.3 — Suction bell vanes ... 85
D.4 — Floor cone with vanes for clear liquids ... 86
D.5 — Floor cone with vanes for solids-bearing liquids .. 86
D.6 — Flow splitter in wet well ... 86
E.1 — Front – high-level entry ... 91
E.2 — Schematic, front – high-level entry ... 91
E.3 — Side – high-level entry .. 92
E.4 — Schematic, side – high-level entry .. 92
E.5 — Side – low-level entry .. 93
E.6 — Schematic, side – low-level entry ... 93
E.7 — Recommended sump dimensions .. 94
F.1 — Bell intake shapes ... 96
G.1 — Submersible vertical turbine pump ... 97
I.1a — Stork-type FSI, plan view .. 100
Foreword (Not part of Standard)

Purpose and aims of the Hydraulic Institute

The purpose and aims of the Institute are to promote the continued growth of pump knowledge for the interest of pump manufacturers and to further the interests of the public in such matters as are involved in manufacturing, engineering, distribution, safety, transportation and other problems of the industry, and to this end, among other things:

a) To develop and publish standards for pumps;
b) To collect and disseminate information of value to its members and to the public;
c) To appear for its members before governmental departments and agencies and other bodies in regard to matters affecting the industry;
d) To increase the amount and to improve the quality of pump service to the public;
e) To support educational and research activities;
f) To promote the business interests of its members but not to engage in business of the kind ordinarily carried on for profit or to perform particular services for its members or individual persons as distinguished from activities to improve the business conditions and lawful interests of all of its members.

Purpose of Standards

1) Hydraulic Institute Standards are adopted in the public interest and are designed to help eliminate misunderstandings between the manufacturer, the purchaser and/or the user and to assist the purchaser in selecting and obtaining the proper product for a particular need.

2) Use of Hydraulic Institute Standards is completely voluntary. Existence of Hydraulic Institute Standards does not in any respect preclude a member from manufacturing or selling products not conforming to the Standards.

Definition of a Standard of the Hydraulic Institute

Quoting from Article XV, Standards, of the By-Laws of the Institute, Section B:

“An Institute Standard defines the product, material, process or procedure with reference to one or more of the following: nomenclature, composition, construction, dimensions, tolerances, safety, operating characteristics, performance, quality, rating, testing and service for which designed.”

Comments from users

Comments from users of this standard will be appreciated, to help the Hydraulic Institute prepare even more useful future editions. Questions arising from the content of this standard may be directed to the Technical Director of the Hydraulic Institute. The inquiry will then be directed to the appropriate technical committee for provision of a suitable answer.

If a dispute arises regarding contents of an Institute publication or an answer provided by the Institute to a question such as indicated above, then the point in question shall be sent in writing to the Technical Director of the Hydraulic Institute, who shall initiate the Appeals Process.

Revisions

The Standards of the Hydraulic Institute are subject to constant review, and revisions are undertaken whenever it is found necessary because of new developments and progress in the art. If no revisions are made for five years, the standards are reaffirmed using the ANSI canvass procedure.