Measurement of quartz crystal unit parameters – Part 8: Test fixture for surface mounted quartz crystal units

Mesure des paramètres des résonateurs à quartz – Partie 8: Dispositif d'essai pour les résonateurs à quartz montés en surface
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1 Scope</td>
<td>6</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>6</td>
</tr>
<tr>
<td>3 Specifications</td>
<td>6</td>
</tr>
<tr>
<td>4 Leadless surface mounted quartz crystal units</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Enclosure</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Overtone and frequency range</td>
<td>7</td>
</tr>
<tr>
<td>5 Specifications of measurement method, test fixture</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Specifications of measurement method</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Specifications of transmission test fixture</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Specifications of reflection test fixture</td>
<td>10</td>
</tr>
<tr>
<td>5.4 Measuring equipment</td>
<td>13</td>
</tr>
<tr>
<td>6 Calibration</td>
<td>13</td>
</tr>
<tr>
<td>6.1 Calibration of the transmission test system</td>
<td>13</td>
</tr>
<tr>
<td>6.2 Additional calibration of the transmission test system with C_L adapter board</td>
<td>13</td>
</tr>
<tr>
<td>6.3 Calibration of the reflection measurement system</td>
<td>13</td>
</tr>
<tr>
<td>Bibliography</td>
<td>15</td>
</tr>
</tbody>
</table>

- Figure 1 – Transmission π-network test fixture: Simplified equivalent circuit diagram, frequency range from 1 MHz to 500 MHz
- Figure 2 – Transmission π-network test fixture with physical load capacitors: simplified equivalent circuit, frequency range from 1 MHz to 30 MHz
- Figure 3 – Transmission π-network test fixture: Three-dimensional projection for the test fixture
- Figure 4 – Transmission π-network test fixture: Mechanical design of the test fixture
- Figure 5 – Transmission π-network test fixture with physical load capacitors: Structure of the test fixture
- Figure 6 – Design of the reflection test fixture
- Figure 7 – Mechanical details of the reflection test fixture
- Figure 8 – Calibration technique for the reflection test fixture
INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT OF QUARTZ CRYSTAL UNIT PARAMETERS –

Part 8: Test fixture for surface mounted quartz crystal units

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60444-8 has been prepared by IEC technical committee 49: Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection.

This bilingual version (2017-04) corresponds to the monolingual English version, published in 2016-12.

This second edition cancels and replaces the first edition published in 2003. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) modification of Clause 1;

b) modification of 5.2;
c) modification of 5.3;
d) modification of 5.4;
e) 6.3 Calibration of the reflection measurement system.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/1126/CDV</td>
<td>49/1175/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60444 series, published under the general title *Measurement of quartz crystal unit parameters*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This document focuses on test fixtures applied to leadless surface mounted quartz crystal units. The document is the specification for fixtures [1][2] that allow the measurement of (series) resonance frequency, (series) resonance resistance, and equivalent electrical circuit parameters of leadless surface mounted quartz crystal units. The measurement method using an automatic network analyzer with error correction is described in IEC 60444-5, which also contains proposals for test fixtures for quartz crystal units in through-hole packages.

The measuring frequency range is from 1 MHz to 1 200 MHz, and is limited to 1 MHz to 30 MHz, if a physical load capacitance is used. The use of the test fixtures in connection with error correction measurement techniques yields measurement accuracy of about 10^{-6} over of the frequency range, and the accuracy of the resonance resistance is $\pm 2 \, \Omega$ or $\pm 10 \%$.

This document forms Part 8 of a series of publications dealing with measurements of quartz crystal unit parameters.

The IEC 60444 series consists of the following parts under the general title Measurement of quartz crystal unit parameters:

Part 1: Basic method for the measurement of resonance frequency and resonance resistance of quartz crystal units by zero phase technique in a π-network
Part 2: Phase offset method for measurement of motional capacitance of quartz crystal units
Part 4: Method for the measurement of the load resonance frequency f_L, load resonance resistance R_L and the calculation of other derived values of quartz crystal units, up to 30 MHz
Part 5: Methods for the determination of equivalent electrical parameters using automatic network analyzer techniques and error correction
Part 6: Measurement of drive level dependence (DLD)
Part 7: Measurement of activity and frequency dips of quartz crystal units
Part 8 Text fixture for surface mounted quartz crystal units
Part 11 Standard method for the determination of the load resonance frequency f_L and the effective load capacitance C_{Leff} using automatic network analyzer techniques and error correction.

1 Numbers in square brackets refer to the Bibliography.
1 Scope

This part of IEC 60444 describes test fixtures suitable for leadless surface mounted quartz crystal units in enclosures as defined in IEC 61837 (all parts). These fixtures allow the measurement of (series) resonance frequency, (series) resonance resistance, and equivalent electrical circuit parameters L_1, C_1 and C_0 using the measurement techniques specified in IEC 60444-5 and for the determination of load resonance frequency and load resonance resistance according to IEC TR 60444-4 and IEC 60444-11.

Two test fixtures are described in this document:

1) A fixture using the π-network circuit with electrical values as described in IEC 60444-1 for measurements in transmission mode up to 500 MHz. This fixture includes optional means to add physical load capacitors for the measurement of load resonance parameters up to 30 MHz in accordance with IEC 60444-4. The range of load capacitance is 10 pF or more. Calibration of the measurement system and C_L adapter board is explained hereinafter.

2) A fixture based on the reflection method, suitable for a frequency range up to 1 200 MHz. No provisions for adding a physical load capacitance are anticipated. Load resonance parameters can be measured by using the method of IEC 60444-11.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60444-5, Measurement of quartz crystal units parameters – Part 5: Methods for the determination of equivalent electrical parameters using automatic network analyzer techniques and error correction
SOMMAIRE

AVANT-PROPOS .. 17
INTRODUCTION ... 19
1 Domaine d’application .. 20
2 Références normatives .. 20
3 Spécifications .. 20
4 Résonateurs à quartz sans sorties montés en surface ... 21
 4.1 Enveloppe ... 21
 4.2 Mode partiel et plage de fréquences .. 21
5 Spécifications de la méthode de mesure et du dispositif d’essai 21
 5.1 Spécifications de la méthode de mesure ... 21
 5.2 Spécifications du dispositif d’essai de transmission .. 21
 5.3 Spécifications du dispositif d’essai de réflexion ... 23
 5.4 Équipement de mesure ... 26
6 Étalonnage .. 26
 6.1 Étalonnage du système d’essai de transmission .. 26
 6.2 Étalonnage supplémentaire du système d’essai de transmission avec la carte
d’adaptateur C_L ... 26
 6.3 Étalonnage du système de mesure de réflexion .. 26
Bibliographie ... 28

Figure 1 – Dispositif d’essai du circuit de transmission en π: Diagramme simplifié de
circuit équivalent, plage de fréquences comprise entre 1 MHz et 500 MHz 21
Figure 2 – Dispositif d’essai du circuit de transmission en π avec condensateurs de
charge physique: circuit équivalent simplifié, plage de fréquences comprise entre 1 MHz
et 30 MHz ... 21
Figure 3 – Dispositif d’essai du circuit de transmission en π: Représentation 3D du
dispositif d’essai... 22
Figure 4 – Dispositif d’essai du circuit de transmission en π: Conception mécanique du
dispositif d’essai... 22
Figure 5 – Dispositif d’essai du circuit de transmission en π avec condensateurs de
charge physiques: Structure du dispositif d’essai ... 23
Figure 6 – Conception du dispositif d’essai de réflexion .. 24
Figure 7 – Détails mécaniques du dispositif d’essai de réflexion 26
Figure 8 – Technique d’étalonnage du dispositif d’essai de réflexion 27
MESURE DES PARAMÈTRES DES RÉSONATEURS À QUARTZ –
Partie 8: Dispositif d'essai pour les résonateurs à quartz montés en surface

AVANT-PROPOS

2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets traités, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.

3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 60444-8 a été établie par le comité d'études 49 de l'IEC: Dispositifs piézoélectriques, diélectriques et électrostatiques et matériaux associés pour la détection, le choix et la commande de la fréquence.

Cette deuxième édition annule et remplace la première édition parue en 2003. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

a) modification de l'Article 1;

b) modification du 5.2;
c) modification du 5.3;
d) modification du 5.4;
e) 6.3 Étalonnage du système de mesure de réflexion.

La présente version bilingue (2017-04) correspond à la version anglaise monolingue publiée en 2016-12.

Le texte anglais de cette norme est issu des documents 49/1126/94/CDV et 49/1175/RVC.

Le rapport de vote 49/1175/RVC donne toute information sur le vote ayant abouti à l'approbation de cette norme.

La version française de cette norme n'a pas été soumise au vote.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 60444, publiées sous le titre général Mesure des paramètres des résonateurs à quartz, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. A cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.
Le présent document couvre les dispositifs d'essai appliqués aux résonateurs à quartz sans sorties montés en surface. Le présent document constitue la spécification des dispositifs [1][2]1 qui permettent le mesurage des paramètres de fréquence de résonance (en série), de résistance de résonance (en série) et de circuit électrique équivalent des résonateurs à quartz sans sorties montés en surface. La méthode de mesure utilisant un analyseur automatique de réseaux et la correction des erreurs est indiquée dans l'IEC 60444-5, qui contient également des propositions de dispositifs d'essai pour les résonateurs à quartz dans des boîtiers à trous traversants.

La plage des fréquences de mesure est comprise entre 1 MHz et 1 200 MHz; elle est limitée entre 1 MHz et 30 MHz lorsqu'une capacité de charge physique est utilisée. L'utilisation de dispositifs d'essai dans le cadre des techniques de mesure de la correction des erreurs produit une exactitude de mesure d'environ 10⁻⁶ sur la plage de fréquences, et l'exactitude de la résistance de résonance est de ±2 Ω ou ±10 %.

La présente norme constitue la Partie 8 d'une série de publications qui traitent des mesures des paramètres des résonateurs à quartz.

L'IEC 60444 comprend les parties suivantes, regroupées sous le titre général Mesure des paramètres des résonateurs à quartz:

Partie 1: Méthode fondamentale pour la mesure de la fréquence de résonance et de la résistance de résonance des quartz piézoélectriques par la technique de phase nulle dans le circuit en π
Partie 2: Méthode de décalage de phase pour la mesure de la capacité dynamique des quartz
Partie 4: Méthode pour la mesure de la fréquence de résonance à la charge f_L et de la résistance de résonance à la charge R_L, et pour le calcul des autres valeurs dérivées des quartz piézoélectriques, jusqu'à 30 MHz
Partie 5: Méthodes pour la détermination des paramètres électriques équivalents utilisant des analyseurs automatiques de réseaux et correction des erreurs
Partie 6: Mesure de la dépendance du niveau d'excitation (DNE)
Partie 7: Mesure des baisses de l'activité et de la fréquence des résonateurs à quartz
Partie 8: Dispositif d'essai pour les résonateurs à quartz montés en surface
Partie 11: Méthode normalisée pour la détermination de la fréquence de résonance à la charge f_L et de la capacité de charge efficace C_{eff} utilisant des analyseurs automatiques de réseaux et correction des erreurs

1 Les chiffres entre crochets se réfèrent à la Bibliographie.
MESURE DES PARAMÈTRES DES RÉSONATEURS À QUARTZ –

Partie 8: Dispositif d'essai pour les résonateurs à quartz montés en surface

1 Domaine d'application

La présente partie de l'IEC 60444 spécifie les dispositifs d'essai appropriés aux résonateurs à quartz sans sorties montés en surface dans des enveloppes tels que définis dans l'IEC 61837 (toutes les parties). Ces dispositifs permettent de mesurer les paramètres de fréquence de résonance (en série), de résistance de résonance (en série) et de circuit électrique équivalents L_1, C_1 et C_0 à l'aide des techniques de mesure spécifiées dans l'IEC 60444-5. Ils permettent également de déterminer la fréquence de résonance à la charge et la résistance de résonance à la charge selon l'IEC TR 60444-4 et l'IEC 60444-11.

Deux dispositifs d'essai sont spécifiés dans le présent document:

1) Un dispositif utilisant le circuit en π avec des valeurs électriques telles que décrites dans l'IEC 60444-1 pour les mesurages en mode de transmission jusqu'à 500 MHz. Ce dispositif comprend des moyens facultatifs permettant d'ajouter des condensateurs de charge physique pour le mesurage des paramètres de résonance à la charge jusqu'à 30 MHz conformément à l'IEC 60444-4. La plage de la capacité de charge est de 10 pF ou plus. L'étalonnage du système de mesure et de la carte d'adaptateur C_L est décrit ci-après.

2) Un dispositif fonctionnant selon la méthode de réflexion, approprié pour une plage de fréquences jusqu'à 1 200 MHz. Aucune disposition concernant l'ajout d'une capacité de charge physique n'est prévue. Les paramètres de résonance à la charge peuvent être mesurés en utilisant la méthode spécifiée dans l'IEC 60444-11.

2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60444-5, Mesure des paramètres des résonateurs à quartz – Partie 5: Méthodes pour la détermination des paramètres électriques équivalents utilisant des analyseurs automatiques de réseaux et correction des erreurs