

Edition 3.0 2015-12

INTERNATIONAL STANDARD

Industrial-process control valves –
Part 2-3: Flow capacity – Test procedures

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 23.060.40; 25.040.40

ISBN 978-2-8322-3055-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWC	RD	4		
1	Scop	e	6		
2	Norm	native references	6		
3	Terms and definitions				
4	Syml	Symbols			
5	•	system			
J	5.1	Test specimen			
	5.2	Test section			
	5.3	Throttling valves			
	5.4	Flow measurement			
	5.5	Pressure taps			
	5.6	Pressure measurement			
	5.7	Temperature measurement	10		
	5.8	Valve travel			
	5.9	Installation of test specimen	11		
6	Accu	racy of tests	12		
7	Test	fluidsfluids	12		
	7.1	Incompressible fluids	12		
	7.2	Compressible fluids			
8	Test	procedure for incompressible fluids			
	8.1	Test procedure for flow coefficient C			
	8.2	Test procedure for liquid pressure recovery factor $F_{\rm L}$ and combined liquid			
		pressure recovery factor and piping geometry factor F_{LP}	14		
	8.3	Test procedure for piping geometry factor F _p	15		
	8.4	Test procedure for liquid critical pressure ratio factor F_{F}	15		
	8.5	Test procedure for Reynolds number factor F_R for incompressible flow	15		
	8.6	Test procedure for valve style modifier F_{d}			
9	Data	evaluation procedure for incompressible fluids			
	9.1	Non-choked flow	16		
	9.2	Choked flow	16		
	9.3	Calculation of flow coefficient C	17		
	9.4	Calculation of liquid pressure recovery factor F_L and the combined liquid pressure recovery factor and piping geometry factor F_{LP}	17		
	9.5	Calculation of piping geometry factor Fp			
	9.6	Calculation of liquid critical pressure ratio factor F _F	18		
	9.7	Calculation of Reynolds number factor F_{R}	18		
	9.8	Calculation of valve style modifier F _d			
10	Test	procedure for compressible fluids	19		
	10.1	Test procedure for flow coefficient C	19		
	10.2	Test procedure for pressure differential ratio factors x_T and x_{TP}	20		
	10.3	Test procedure for piping geometry factor F_p			
	10.4	Test procedure for Reynolds number factor F_R			
	10.5	Test procedure for valve style modifier F_d			
	10.6	Test procedure for small flow trim			
11	Data	evaluation procedure for compressible fluids	23		

11.1 Flow equation	23
11.2 Calculation of flow coefficient C	23
11.3 Calculation of pressure differential ratio factor x_{T}	23
11.4 Calculation of pressure differential ratio factor x _{TP}	24
11.5 Calculation of piping geometry factor F _p	
11.6 Calculation of Reynolds number factor F_R for compressible fluids	
11.7 Calculation of valve style modifier F _d	
11.8 Calculation of flow coefficient C for small flow trim	24
Annex A (normative) Typical examples of test specimens showing appropriate pressure tap locations	26
Annex B (informative) Engineering data	
Annex C (informative) Derivation of the valve style modifier, F _d	
Annex D (informative) Laminar flow test discussion	
Annex E (informative) Long form F _L test procedure	
E.1 General	
E.2 Test procedure	
E.3 Graphical data reduction	
Annex F (informative) Calculation of F_{P} to help determine if pipe/valve port diameters	
are adequately matched	39
Bibliography	41
Figure 1 – Basic flow test system	8
Figure 2 – Test section piping requirements	9
Figure 3 – Recommended pressure tap connection	11
Figure A.1 – Typical examples of test specimens showing appropriate pressure tap	
locations	
Figure B.1 – Dynamic viscosity of water	
Figure C.1 – Single seated, parabolic plug (flow tending to open)	34
Figure C.2 – Swing-through butterfly valve	34
Figure E.1 – Typical flow results	37
Table 1 – Test specimen alignment	11
Table 2 – Minimum inlet absolute test pressure $$ in kPa (bar) as related to F_{L} and ${}_{\Delta}p$	13
Table 3 – Numerical constants <i>N</i>	25
Table B.1 – Properties for water	28
Table B.2 – Properties of air	29
Table B.3 – Test section piping	30
Table C.1 – Numerical constant, <i>N</i>	34
Table F.1 – Tabulated values of F_{P} if upstream and downstream pipe the same size	40
Table F.2 – Tabulated values of <i>F</i> P if downstream pipe larger than valve	40
· · · · · ·	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL-PROCESS CONTROL VALVES -

Part 2-3: Flow capacity – Test procedures

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60534-2-3 has been prepared by subcommittee 65B: Measurement and control devices, of IEC technical committee 65: Industrial-process measurement, control and automation.

The third edition cancels and replaces the second edition published in 1997, of which it constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Addition of informative Annexes B, C, D, E and F.
- b) Organizational and formatting changes were made to group technically related subject matter.

The text of this standard is based on the following documents:

FDIS	Report on voting
65B/1025/FDIS	65B/1028/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60534 series, published under the general title *Industrial-process* control valves, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- · amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INDUSTRIAL-PROCESS CONTROL VALVES -

Part 2-3: Flow capacity – Test procedures

1 Scope

This part of IEC 60534 is applicable to industrial-process control valves and provides the flow capacity test procedures for determining the following variables used in the equations given in IEC 60534-2-1:

- a) flow coefficient C;
- b) liquid pressure recovery factor without attached fittings F_L ;
- c) combined liquid pressure recovery factor and piping geometry factor of a control valve with attached fittings F_{LP} ;
- d) piping geometry factor F_P ;
- e) pressure differential ratio factors x_T and x_{TP} ;
- f) valve style modifier F_d ;
- g) Reynolds number factor F_R .

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60534-1, Industrial-process control valves – Part 1: Control valve terminology and general considerations

IEC 60534-2-1:2011, Industrial-process control valves – Part 2-1: Flow capacity – Sizing equations for fluid flow under installed conditions

IEC 60534-8-2, Industrial-process control valves – Part 8-2: Noise considerations – Laboratory measurement of noise generated by hydrodynamic flow through control valves

IEC 61298-1, Process measurement and control devices – General methods and procedures for evaluating performance – Part 1: General considerations

IEC 61298-2, Process measurement and control devices – General methods and procedures for evaluating performance – Part 2: Tests under reference conditions