

Edition 2.0 2007-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Semiconductor devices – Discrete devices – Part 4: Microwave diodes and transistors

Dispositifs à semiconducteurs – Dispositifs discrets – Partie 4: Diodes et transistors hyperfréquences

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 31.080.10 / 31.080.30

ISBN 2-8318-9262-7

- 2 -

CONTENTS

FO	REW	ORD	6
1	Scop)e	8
2	Norm	native references	8
3	Varia	able capacitance, snap-off diodes and fast-switching schottky diodes	8
	3.1	Variable capacitance diodes	8
		3.1.1 General	8
		3.1.2 Terminology and letter symbols	9
		3.1.3 Essential ratings and characteristics	9
		3.1.4 Measuring methods	. 12
	3.2	Snap-off diodes, Schottky diodes	. 39
		3.2.1 General	39
		3.2.2 Terminology and letter symbols	39
		3.2.3 Essential ratings and characteristics	. 39
		3.2.4 Measuring methods	.41
4	Mixe	r diodes and detector diodes	.48
	4.1	Mixer diodes used in radar applications	. 48
		4.1.1 General	.48
		4.1.2 Terminology and letter symbols	.48
		4.1.3 Essential ratings and characteristics	.48
		4.1.4 Measuring methods	. 50
	4.2	Mixer diodes used in communication applications	.69
		4.2.1 General	.69
		4.2.2 Terminology and letter symbols	.69
		4.2.3 Essential ratings and characteristics	.69
		4.2.4 Measuring methods	.71
	4.3	Detector diodes	.71
5	Impa	tt diodes	.71
	5.1	Impatt diodes amplifiers	.71
		5.1.1 General	.71
		5.1.2 Terms and definitions	.71
		5.1.3 Essential ratings and characteristics	.74
	5.2	Impatt diodes oscillators	.77
6	Gunr	n diodes	.77
	6.1	General	.77
	6.2	Terms and definitions	.78
	6.3	Essential ratings and characteristics	.78
	6.4	Measuring methods	.78
		6.4.1 Pulse breakdown voltage	.78
		6.4.2 I hreshold voltage	. 79
-	D .	6.4.3 Resistance	.80
1	Віро	iar transistors	.81
	7.1	General	.81
	7.2	Terms and definitions	.81
	7.3	Essential ratings and characteristics	. 84

		7.3.1	General	84	
		7.3.2	Limiting values (absolute maximum rating system)	84	
	7.4	Measu	ring methods	87	
		7.4.1	General	87	
		7.4.2	DC characteristics		
		7.4.3	RF characteristics		
	7.5	Verifyir	ng methods	103	
		7.5.1	Load mismatch tolerance (Ψ_L)	103	
		7.5.2	Source mismatch tolerance ($\Psi_{\rm S}$)	107	
		7.5.3	Load mismatch ruggedness (Ψ_{R})	111	
8	Field-effect transistors				
	8.1 General				
	8.2	Terms	and definitions	112	
	8.3	Essent	ial ratings and characteristics	115	
		8.3.1	General	115	
		8.3.2	Limiting values (absolute maximum rating system)	116	
	8.4	Measu	ring methods	117	
		8.4.1	General	117	
		8.4.2	DC characteristics	118	
		8.4.3	RF characteristics	124	
	8.5	Verifyir	ng methods	135	
		8.5.1	Load mismatch tolerance (Ψ_L)	135	
		8.5.2	Source mismatch tolerance (Ψ_{S})	135	
		8.5.3	Load mismatch ruggedness (\varPsi_{R})	135	
9	Asses	ssment	and reliability – specific requirements	135	
	9.1	Electric	cal test conditions	135	
	9.2	Failure	criteria and failure-defining characteristics for acceptance tests	135	
	9.3	Failure	criteria and failure-defining characteristics for reliability tests	135	
	9.4	Proced	ure in case of a testing error	135	
Fia	uro 1 .	- Fauiva	alent circuit	12	
r ig			for the measurement of reverse surrent /		
rig	ure z -		tion the measurement of reverse current <i>r</i> _R	12	
Fig	ure 3 -	- Circuit	t for the measurement of forward voltage V _F		
Fig	ure 4 -	- Circuit	t for the measurement of capacitance C _{tot}	14	
Fig	ure 5 -	- Circuit	t for the measurement of effective quality factor	15	
Fig	ure 6 -	- Circuit	for the measurement of series inductance	17	
Fig	ure 7 -	- Circuit	for the measurement of thermal resistance <i>R</i> th		
Fig	ure 8 -	- Circuit	for the measurement of transient thermal impedance Z _{th}		
Fig	ure 9 -	- Waveg	guide mounting	21	
Fig	ure 10	– Equiv	valent circuit of mounted diode	21	
Fig	ure 11	– Block	diagram of transmission loss measurement circuit	22	
Fig	ure 12	– Curv	e indicating transmitted power versus frequency	24	
Fig	ure 13	– Exan	ple of cavity		
Fig	ure 14	– Block	diagram for the measurement of effective Q in cavity method		

Figure 15 – Block diagram of transformed impedance measurement circuit
Figure 16 – Example of plot of diode impedance as a function of bias
Figure 17 – Modified Smith Chart indicating constant Q and constant R circles
Figure 18 – Transition time <i>t</i> t
Figure 19 – Circuit for the measurement of transition time (t_1) 41
Figure 20 – The time interval (<i>t</i> _{t1})43
Figure 21 – Circuit for the measurement of reverse recovery time
Figure 22 – The reverse recovery time $t_{\rm rr}$
Figure 23 – Circuit for the measurement of the excess carrier effective lifetime
Figure 24 - Circuit for the measurement of the excess carrier effective lifetime
Figure 25 – the ratio of i_{pr} to i_{pf}
Figure 26 – Circuit for the measurement of forward current (I_F)
Figure 27 – Circuit for the measurement of rectified current (I_0)
Figure 28 – Circuit for the measurement of intermediate frequency impedance (Z_{if}) in the method 1
Figure 29 – Circuit for the measurement of intermediate frequency impedance (Z_{if}) in the method 2
Figure 30 – Circuit for the measurement of voltage standing wave ratio
Figure 31 – Circuit for the measurement of overall noise factor
Figure 32 – Circuit for the measurement of output noise ratio
Figure 33 – Circuit for the measurement of conversion loss in dc incremental method63
Figure 34 – Circuit for the measurement of conversion loss in amplitude modulation
Figure 35 – Block diagram of burnout energy measurement circuit
Figure $36 - \text{Circuit}$ for the measurement of pulse breakdown voltage 78
Figure 37 – Circuit for the measurement of threshold voltage 79
Figure 38 – Circuit for the measurement of resistance in voltmeter-ammeter method
Figure 39 – Circuit for the measurement of resistance in alternative method
Figure 40 – Circuit for the measurement of scattering parameters
Figure 41 – Incident and reflected waves in a two-port network
Figure 42 – Circuit for the measurements of two-tone intermodulation distortion
Figure 43 – Example of third order intermodulation products indicated by the spectrum analyser
Figure 44 – Typical intermodulation products output power characteristic
Figure 45 – Circuit for the verification of load mismatch tolerance in the method 1
Figure 46 – Circuit for the verification of load mismatch tolerance in the method 2
Figure 47 – Circuit for the verification of source mismatch tolerance in the method 1108

Figure 48 – Circuit for the verification of source mismatch tolerance in the method 2	110
Figure 49 – Circuit for the verification of load mismatch ruggedness	111
Figure 50 – Circuit for the measurements of gate-source breakdown voltage, $V_{({\sf BR}){\sf GSO}}$	119
Figure 51 – Circuit for the measurements of gate-drain breakdown voltage, $V_{({\sf BR}){\sf GDO}}$	119
Figure 52 – Circuit for the measurement of thermal resistance, channel-to-case	120
Figure 53 – Timing chart of DC pulse to be supplied to the device being measured	122
Figure 54 – Calibration curve V_{GSF} = $f(T_{ch})$ for fixed $I_{G(ref)}$, evaluation of α	123
Figure 55 – V_{GSF2} in function of delay time τ_4	124
Figure 56 – Circuit for the measurement of output power at specified input power	125
Figure 57 – Circuit for the measurements of the noise figure and associated gain	130

Table 1 – Electrical limiting values	84
Table 2 – DC characteristics	85
Table 3 – RF characteristics	86
Table 4 – Replacing rule for terms	87
Table 5 – Replacing rule for symbols in the case of constant base current	
Table 6 – Replacing rule for symbols in the case of constant base voltage	
Table 7 – Electrical limiting values	116
Table 8 – DC characteristics	116
Table 9 – RF characteristics	117
Table 10 – Replacing rules for terms	118
Table 11 – Replacing rules for symbols	118
Table 12 – Operating conditions and Test circuits	
Table 13 – Failure criteria and measurement conditions	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 4: Microwave diodes and transistors

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60747-4 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

This second edition cancels and replaces the first edition, published in 1991, its amendments 1, 2 and 3 (1993, 1999 and 2001, respectively), and constitutes a technical revision.

The major technical changes with regard to the previous edition are as follows:

- a) the clause of bipolar transistors has been added;
- b) the clause of field-effect transistors has been amended.

The text of this standard is based on the following documents:

FDIS	Report on voting
47E/330/FDIS	47E/339/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The list of all parts of the IEC 60747 series, under the general title *Semiconductor devices* – *Discrete devices*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 4: Microwave diodes and transistors

1 Scope

This part of IEC 60747 gives requirements for the following categories of discrete devices:

- variable capacitance diodes and snap-off diodes (for tuning, up-converter or harmonic multiplication, switching, limiting, phased shift, parametric amplification);
- mixer diodes and detector diodes;
- avalanche diodes (for direct harmonic generation, amplification);
- gunn diodes (for direct harmonic generation);
- bipolar transistors (for amplification, oscillation);
- field-effect transistors (for amplification, oscillation).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-702:1992, International Electrotechnical Vocabulary – Chapter 702: Oscillations, signals and related devices

IEC 60747-1:2006, Semiconductor devices – Part 1: General

IEC 60747-7:2000, Semiconductor devices – Part 7: Bipolar transistors

IEC 60747-8:2000, Semiconductor devices – Part 8: Field-effect transistors

IEC 60747-16-1:2001, Semiconductor devices – Part 16-1: Microwave integrated circuits – Amplifiers

Amendment 1(2007)

SOMMAIRE

AV	ANT-F	ROPOS	5	144
1	Doma	aine d'a _l	pplication	146
2	Réféi	rences r	normatives	146
3	Diode comn	es à cap nutation	acité variable, diodes à retour rapide et diodes schottky de rapide	146
	3.1	Diodes	à capacité variable	146
		3.1.1	Généralités	146
		3.1.2	Terminologie et symboles littéraux	147
		3.1.3	Valeurs limites et caractéristiques essentielles	147
		3.1.4	Méthodes de mesure	150
	3.2	Diodes	à retour rapide, diodes Schottky	178
		3.2.1	Généralités	178
		3.2.2	Terminologie et symboles littéraux	178
		3.2.3	Valeurs limites et caractéristiques essentielles;	178
		3.2.4	Méthodes de mesure	180
4	Diode	es mélai	ngeuses et diodes détectrices	187
	4.1	Diodes	mélangeuses utilisées dans les applications radar	187
		4.1.1	Généralités	187
		4.1.2	Terminologie et symboles littéraux	187
		4.1.3	Valeurs limites et caractéristiques essentielles;	187
	4.0	4.1.4 Diadaa	Methodes de mesure	189
	4.2		Cénérolitée	208
		4.2.1	Terminologie et symboles littéraux	208
		423	Valeurs limites et caractéristiques essentielles:	208
		4.2.4	Méthodes de mesure	
	4.3	Diodes	détectrices	210
5	Diode	es Impat	tt	210
	5.1	Diodes	Impatt pour applications en amplificateur	210
		5.1.1	Généralités	210
		5.1.2	Termes et définitions	210
		5.1.3	Valeurs limites et caractéristiques essentielles;	213
	5.2	Diodes	Impatt pour applications en oscillateur	216
6	Diode	es Gunn	۱	216
	6.1	Généra	alités	216
	6.2	Termes	s et définitions	217
	6.3	Valeurs	s limites et caractéristiques essentielles;	217
	6.4	Méthoo	des de mesure	217
		6.4.1	Tension de claquage d'impulsion	217
		6.4.2	Tension de seuil	218
-	-	6.4.3	Résistance	219
1	i rans	sistors b	npolaires	
	7.1	Généra		
	7.2 7.2	lermes	s et definitions	
	1.3	valeurs	s imites et caracteristiques essentielles;	

		7.3.1	Généralités	223	
		7.3.2	Valeurs limites (système de valeurs limites maximales absolues)	223	
	7.4	Méthod	les de mesure	226	
		7.4.1	Généralités	226	
		7.4.2	Caractéristiques en continu	228	
		7.4.3	Caractéristiques RF	228	
	7.5	Méthod	les de vérification	242	
		7.5.1	Tolérance de charge non adaptée (Ψ_L)	242	
		7.5.2	Tolérance de source non adaptée (Ψ_{S})	245	
		7.5.3	Robustesse de charge non adaptée (Ψ_R)	248	
8	Trans	sistors à	effet de champ	249	
	8.1	Généra	llités	249	
	8.2	Termes	s et définitions	249	
	8.3	Valeurs	s limites et caractéristiques essentielles	252	
		8.3.1	Généralités	252	
		8.3.2	Valeurs limites (système de valeurs limites maximales absolues)	252	
	8.4	Méthod	les de mesure	254	
		8.4.1	Généralités	254	
		8.4.2	Caractéristiques en continu	255	
	0.5	8.4.3	Caractéristiques RF	262	
	8.5	Method		273	
		8.5.1	l'olerance de charge non adaptee (Ψ_L)	273	
		8.5.2	l olérance de source non adaptée ($\Psi_{\rm S}$)	273	
~		8.5.3	Robustesse de charge non adaptée ($\Psi_{\rm R}$)	273	
9	Rece	ption et	fiabilite – exigences specifiques	273	
	9.1	Conditions pour les essais électriques			
	9.2	Critères essais	s de défaillance et caractéristiques définissant la défaillance pour les de réception	273	
	9.3	Critère: essais	s de défaillance et caractéristiques définissant la défaillance pour les de fiabilité	273	
	9.4	Procéd	ure à suivre dans le cas d'une erreur d'essai	273	
Fig	ure 1 -	- Circuit	équivalent	150	
Fig	ure 2 -	 Circuit 	t pour la mesure du courant inverse I_{R}	151	
Fig	ure 3 -	 Circuit 	t pour la mesure de la tension directe $V_{ extsf{F}}$	152	
Fig	ure 4 -	- Circuit	t pour la mesure de la capacité totale C _{tot}	153	
Fig	ure 5 -	- Circuit	t de base pour la mesure du facteur de qualité effectif	154	
Fig	ure 6 -	- Circuit	de base pour la mesure de l'inductance série	155	
Fig	ure 7 -	- Circuit	pour la mesure de la résistance thermique R _{th}	157	
Fia	ure 8 -	- Circuit	pour la mesure de l'impédance thermique transitoire Z _{th}	158	
Fia	ure 9 -	- Monta	ge en guide d'ondes	160	
Fig	ure 10	– Circu	it équivalent de la diode dans sa monture	160	
Fig	Figure 11 – Schéma fonctionnel du circuit de mesure des pertes de transmission 161				
Ein	uro 10	Cour	he indiquant la nuissance transmise on fonction de la fréquence	162	
T'I'		– Cour	pe maiquant la puissance transmise en fonction de la frequence	105	
r igi	ure 13	- Exem	ipie de cavite	105	
Fig	ure 14	– Sché	ma synoptique	167	

Figure 15 – Schéma fonctionnel du circuit de mesure par transformation de la représentation d'impédance	174
Figure 16 – Exemple de diagramme de l'impédance de la diode en fonction de la polarisation	175
Figure 17 – Diagramme de Smith modifié, indiquant les cercles de Q constant et de R constante	177
Figure 18 – Temps de transition $t_{\rm t}$	178
Figure 19 – Circuit pour la mesure du temps de transition $(t_{\rm f})$	180
Figure 20 – L'intervalle de temps (t_{t1})	182
Figure 21 – Circuit pour la mesure du temps de recouvrement inverse	182
Figure 22 – Le temps de recouvrement inverse $t_{\rm rr}$	183
Figure 23 – Principe de mesure de durée de vie des porteurs en excès	184
Figure 24 – Circuit pour la mesure de la durée de vie effective des porteurs en excès	185
Figure 25 – le rapport i _{pr} sur i _{pf}	186
Figure 26 – Circuit pour la mesure du courant direct (I _F)	189
Figure 27 – Circuit pour la mesure du courant redressé (<i>I</i> ₀)	190
Figure 28 – Circuit pour la mesure de l'impédance à la fréquence intermédiaire (Z _{if}) dans la méthode 1	191
Figure 29 – Circuit pour la mesure de l'impédance à la fréquence intermédiaire (Z_{if}) dans la méthode 2	192
Figure 30 – Circuit pour la mesure du rapport d'ondes stationnaires	194
Figure 31 – Circuit pour la mesure du facteur de bruit total	196
Figure 32 – Circuit pour la mesure du rapport de température de bruit en sortie	200
Figure 33 – Circuit pour la mesure de la perte de conversion par la méthode d'accroissement continu	202
Figure 34 – Circuit pour la mesure de la perte de conversion par la méthode de modulation d'amplitude	203
Figure 35 – Schéma du circuit de mesure de l'énergie de destruction	204
Figure 36 – Circuit pour la mesure de la tension de claquage d'impulsion	217
Figure 37 – Circuit pour la mesure de la tension de seuil	218
Figure 38 – Circuit pour la mesure de la résistance par la méthode voltmètre – ampèremètre	219
Figure 39 – Circuit pour la mesure de la résistance par la méthode de substitution	220
Figure 40 – Schéma du circuit de mesure des paramètres de diffusion	230
Figure 41 – Ondes incidentes et réfléchies dans un réseau à deux ports	231
Figure 42 – Circuit de base pour la mesure de la distorsion d'intermodulation à deux fréquences porteuses	237
Figure 43 – Exemple de produit d'intermodulation du troisième ordre par l'analyseur de spectre	239
Figure 44 – Caractéristique typique de la de puissance de sortie des produits d'intermodulation	241
Figure 45 – Circuit de base pour les mesures de la tolérance de charge non adaptée dans la méthode de vérification 1	242
Figure 46 – Circuit de base pour les mesures de la tolérance de charge non adaptée dans la méthode de vérification 2	244
Figure 47 – Circuit pour les mesures de la tolérance de source non adaptée dans la méthode de vérification 1	245

60747-4 © CEI:2007

Figure 48 – Circuit pour les mesures de la tolérance de source non adaptée dans la méthode de vérification 2	247
Figure 49 – Circuit de base pour les mesures de la robustesse de charge non adaptée	248
Figure 50 – Circuit de base pour la mesure de la tension de claquage grille-source $V_{(BR)GSO}$	256
Figure 51 – Circuit de base pour la mesure de la tension de claquage grille-source, $V_{(BR)GDO}$	257
Figure 52 – Circuit pour la mesure de la résistance thermique canal-boîtier	258
Figure 53 – Ordre d'application des impulsions de courant continu du dispositif à mesurer	260
Figure 54 – Courbe d'étalonnage $V_{GSF} = f(T_{ch})$ pour une valeur spécifiée de $I_{G(ref)}$, évaluation du coefficient α	261
Figure 55 – V_{GSF2} en fonction du temps de retard τ_4	262
Figure 56 – Circuit de mesure de la puissance de sortie pour une puissance d'entrée spécifiée	263
Figure 57 – Circuit de base pour la mesure du facteur de bruit	268
Tableau 1 – Valeurs limites électriques	223
Tableau 2 – Caractéristiques en continu	224
Tableau 3 – Caractéristiques RF	225
Tableau 4 – Règle de remplacement des termes	226
Tableau 5 – Règle de remplacement des symboles dans le cas du courant de base constant	227
Tableau 6 – Règle de remplacement des symboles dans le cas de la tension de base constante	227
Tableau 7 – Valeurs limites électriques	253
Tableau 8 – Caractéristiques en continu	253
Tableau 9 – Caractéristiques RF	254
Tableau 10 – Règles de remplacement des termes	255
Tableau 11 – Règles de remplacement des symboles	255
Tableau 12 – Modes opératoires et circuits de test	274
Tableau 13 – Critères de défaillance et conditions de mesure	276

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

DISPOSITIFS À SEMICONDUCTEURS – DISPOSITIFS DISCRETS –

Partie 4: Diodes et transistors hyperfréquences

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60747-4 a été établie par le sous-comité 47E: Dispositifs discrets à semiconducteurs, du comité d'études 47 de la CEI: Dispositifs à semiconducteurs.

Cette deuxième édition annule et remplace la première édition, publiée en 1991, et ses amendements 1, 2 et 3 (1993, 1999 et 2001, respectivement) dont elle constitue une révision technique.

Les changements techniques majeurs par rapport à l'édition précédente sont les suivants:

- a) l'article concernant les transistors bipolaires a été ajouté ;
- b) l'article concernant les transistors à effet de champ a été modifié.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
47E/330/FDIS	47E/339/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de la présente norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

La liste de toutes les parties de la série CEI 60747, présentées sous le titre général *Dispositifs à semiconducteurs – Dispositifs discrets*, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

DISPOSITIFS À SEMICONDUCTEURS – DISPOSITIFS DISCRETS –

Partie 4: Diodes et transistors hyperfréquences

1 Domaine d'application

La présente partie de la CEI 60747 donne les exigences pour les catégories suivantes de dispositifs discrets:

- diodes à capacité variable et diodes à retour rapide (pour accord, transposition ou multiplication de fréquence, commutation, limitation, déphasage, amplification paramétrique);
- diodes mélangeuses et diodes détectrices;
- diodes à avalanche (pour génération directe d'harmoniques, amplification);
- diodes à effet Gunn (pour génération directe d'harmoniques);
- transistors bipolaires (pour amplification, oscillation);
- transistors à effet de champ (pour amplification, oscillation).

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60050-702 :1992, Vocabulaire électrotechnique international – Chapitre 702 :Oscillations, signaux et dispositifs associés

- CEI 60747-1:2006, Semiconductor devices Part 1: General (disponible en anglais seulement)
- CEI 60747-7:2000, Dispositifs à semiconducteurs Partie 7: Transistors bipolaires
- CEI 60747-8:2000, Dispositifs à semiconducteurs Partie 8: Transistors à effet de champ
- CEI 60747-16-1:2001, Semiconductor devices Part 16-1: Microwave integrated circuits Amplifiers (disponible en anglais seulement)

Amendement 1(2007)