TECHNICAL REPORT

BASIC EMC PUBLICATION

Electromagnetic compatibility (EMC) –
Part 3-7: Limits – Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XB

ICS 33.100.10

ISBN 2-8318-9606-1
CONTENTS

FOREWORD .. 5
INTRODUCTION .. 7
ACKNOWLEDGMENT ... 8

1 Scope .. 9
2 Normative references .. 10
3 Terms and definitions .. 10
4 Basic EMC concepts related to voltage fluctuations .. 13
 4.1 Compatibility levels ... 14
 4.2 Planning levels .. 14
 4.2.1 Indicative values of planning levels .. 14
 4.2.2 Assessment procedure for evaluation against planning levels 15
 4.3 Illustration of EMC concepts .. 16
 4.4 Emission levels ... 17
5 General principles ... 18
 5.1 Stage 1: simplified evaluation of disturbance emission 18
 5.2 Stage 2: emission limits relative to actual system characteristics 18
 5.3 Stage 3: acceptance of higher emission levels on a conditional basis 19
 5.4 Responsibilities ... 19
6 General guidelines for the assessment of emission levels ... 19
 6.1 Point of evaluation ... 19
 6.2 Definition of flicker emission level .. 20
 6.3 Assessment of flicker emission levels ... 20
 6.4 Declared system short circuit power or impedance .. 21
 6.4.1 Short-circuit power or impedance for pre-connection assessment of emission levels .. 21
 6.4.2 Short-circuit power or impedance for assessing actual emission levels ... 21
 6.5 General guidelines for assessing the declared system impedance 21
7 General summation law ... 21
8 Emission limits for fluctuating installations connected to MV systems 22
 8.1 Stage 1: simplified evaluation of disturbance emission 22
 8.2 Stage 2: emission limits relative to actual system characteristics 23
 8.2.1 Global emission to be shared between the customers 23
 8.2.2 Individual emission limits .. 24
 8.3 Stage 3: acceptance of higher emission levels on a conditional basis 25
 8.4 Summary diagram of the evaluation procedure .. 26
9 Emission limits for fluctuating installations connected to HV or EHV systems 28
 9.1 Stage 1: simplified evaluation of disturbance emission 28
 9.2 Stage 2: emission limits relative to actual system characteristics 28
 9.2.1 Assessment of the total available power .. 28
 9.2.2 Individual emission limits .. 29
 9.3 Stage 3: acceptance of higher emission levels on a conditional basis 30
10 Rapid voltage changes .. 31
 10.1 General considerations .. 31
 10.2 Compatibility level ... 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Planning levels</td>
<td>32</td>
</tr>
<tr>
<td>10.4</td>
<td>Emission limits</td>
<td>33</td>
</tr>
<tr>
<td>10.5</td>
<td>Assessment procedure for evaluation against planning levels & emission limits</td>
<td>33</td>
</tr>
<tr>
<td>Annex A</td>
<td>P_{st} = 1 curves and numerical data for 230 V and 120 V applications</td>
<td>34</td>
</tr>
<tr>
<td>Annex B</td>
<td>Guidelines on the assessment of flicker transfer coefficient</td>
<td>36</td>
</tr>
<tr>
<td>Annex C</td>
<td>Example of reallocation of global contributions and planning levels considering transfer coefficients</td>
<td>37</td>
</tr>
<tr>
<td>Annex D</td>
<td>The use of the severity indicators A_{st} and A_{lt} to simplify calculations</td>
<td>39</td>
</tr>
<tr>
<td>Annex E</td>
<td>Pre-connection and post-connection assessment of emission for P_{st}</td>
<td>40</td>
</tr>
<tr>
<td>Annex F</td>
<td>Addition of P_{st} from different busbars</td>
<td>49</td>
</tr>
<tr>
<td>Annex G</td>
<td>Examples of case studies</td>
<td>51</td>
</tr>
<tr>
<td>Annex H</td>
<td>List of symbols and subscripts</td>
<td>62</td>
</tr>
</tbody>
</table>

Bibliography | 64

Figure 1 – Illustration of basic voltage quality concepts with time/ location statistics covering the whole system | 17
Figure 2 – Illustration of basic voltage quality concepts with time statistics relevant to one site within the whole system | 17
Figure 3 – Example of a system for sharing global contributions at MV | 23
Figure 4 – Diagram of evaluation procedure | 27
Figure 5 – Determination of S_{t} for a simple HV or EHV system | 28
Figure 6 – Determination of S_{t} for a meshed HV or EHV system | 29
Figure 7 – Equivalent circuit and vector diagram for simple assessments | 31
Figure 8 – Example rapid voltage change associated with motor starting | 31
Figure 9 – Example rapid voltage change associated with capacitor switching | 32
Figure A.1 – P_{st} = 1 curve for regular rectangular voltage changes | 34
Figure E.1 – Shape factor curve for pulse and ramp changes | 41
Figure E.2 – Shape factor curves for double-step and double-ramp changes | 42
Figure E.3 – Shape factor curves for sinusoidal and triangular changes | 42
Figure E.4 – Shape factor curves for aperiodic changes | 43
Figure E.5 – Accounting for network loading | 45
Figure E.6 – System for flicker emission assessment | 47
Figure E.7 – Assessment of emission level using current measurements | 48
Figure F.1 – Example of two loads fed from different busbars | 49
Figure G.1 – Example of effect from a rolling mill | 51
Figure G.2 – Example of effect of multiple spot welder load | 53
Figure G.3 – Example profile of winder reactive power levels | 57
Figure G.4 – Normal system configuration | 58
Figure G.5 – Busbars coupled | 59

This is a preview of "IEC/TR 61000-3-7 Ed...". Click here to purchase the full version from the ANSI store.
Figure G.6 – "n-1" system configuration ...60
Figure G.7 – Operation without SVC ...61

Table 1 – Compatibility levels for flicker in low voltage systems reproduced from IEC 61000-2-2 ..14
Table 2 – Indicative values of planning levels for flicker in MV, HV and EHV power systems ...15
Table 3 – Stage 1 limits for the relative changes in power as a function of the number of changes per minute ...22
Table 4 – Minimum emission limits at MV ..25
Table 5 – Minimum emission limits at HV-EHV ..30
Table 6 – Indicative planning levels for rapid voltage changes as a function of the number of such changes in a given period ..33
Table A.1 – Input relative voltage fluctuation $\Delta V/V$ for $P_{st}=1.0$ at output [13] ..34
Table B.1 – Example of flicker transfer coefficients ..36
Table D.1 – Compatibility levels for A_{st} and A_{lt} in LV and MV power systems39
Table D.2 – Indicative values of planning levels for A_{st} and A_{lt} in MV, HV and EHV power systems ..39
Table G.1 – Flicker measurements for example G.3, flicker effects, normal operation56
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC/TR 61000-3-7, which is a technical report, has been prepared by subcommittee 77A: Low frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility.

This Technical Report forms Part 3-7 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107 [17].

This second edition cancels and replaces the first edition published in 1996 and constitutes a technical revision.

1 Figures in square brackets refer to the bibliography.
This new edition is significantly more streamlined than the original technical report (Edition 1), and reflects the experiences gained in the application of the first edition. This technical report has also been harmonised with IEC/TR 61000-3-6 [18] and IEC/TR 61000-3-13 [19].

The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>77A/576/DTR</td>
<td>77A/615/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

A list of all parts of the IEC 61000 series, under the general title Electromagnetic compatibility (EMC), can be found on the IEC website.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General
 General considerations (introduction, fundamental principles)
 Definitions, terminology

Part 2: Environment
 Description of the environment
 Classification of the environment
 Compatibility levels

Part 3: Limits
 Emission limits
 Immunity limits
 (in so far as they do not fall under the responsibility of product committees)

Part 4: Testing and measurement techniques
 Measurement techniques
 Testing techniques

Part 5: Installation and mitigation guidelines
 Installation guidelines
 Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts published either as International Standards or as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).
ACKNOWLEDGMENT

In 2002, the IEC subcommittee 77A made a request to CIGRE Study Committee C4 and CIRED Study Committee S2, to organize an appropriate technical forum (joint working group) whose scope was to prepare, among other tasks, the revision of the Technical Report IEC 61000-3-7 concerning emission limits for the connection of fluctuating installations to public supply systems at MV, HV and EHV.

To this effect, Joint Working Group CIGRE C4.103/ CIRED entitled “Emission Limits for Disturbing Installations” was appointed in 2003. Some previous work produced by CIGRE JWG C4.07-CIRE has been used as an input to the revision, in particular the planning levels and associated indices, along with the experience since the technical report IEC 61000-3-7 was initially published in 1996.

Subsequent endorsement of the document by IEC was the responsibility of SC 77A.

It may also be worthwhile mentioning that another CIGRE Working Group is currently preparing a Technical Report for reviewing the flicker measurement results available internationally along with the flicker propagation characteristics in systems and the related objectives (flicker levels).
1 Scope

This part of IEC 61000 provides guidance on principles which can be used as the basis for determining the requirements for the connection of fluctuating installations to MV, HV and EHV public power systems (LV installations are covered in other IEC documents). For the purposes of this report, a fluctuating installation means an installation (which may be a load or a generator) that produces voltage flicker and / or rapid voltage changes. The primary objective is to provide guidance to system operators or owners on engineering practices which will facilitate the provision of adequate service quality for all connected customers. In addressing installations, this document is not intended to replace equipment standards for emission limits.

This report addresses the allocation of the capacity of the system to absorb disturbances. It does not address how to mitigate disturbances, nor does it address how the capacity of the system can be increased.

Since the guidelines outlined in this report are necessarily based on certain simplifying assumptions, there is no guarantee that this approach will always provide the optimum solution for all flicker situations. The recommended approach should be used with flexibility and engineering judgment as far as engineering is concerned, when applying the given assessment procedures in full or in part.

The system operator or owner is responsible for specifying requirements for the connection of fluctuating installations to the system. The fluctuating installation is to be understood as the customer’s complete installation (i.e. including fluctuating and non fluctuating parts).

Problems related to voltage fluctuations fall into two basic categories:

- Flicker effect from light sources as a result of voltage fluctuations;
- Rapid voltage changes even within the normal operational voltage tolerances are considered as a disturbing phenomenon.

The report gives guidance for the coordination of the flicker emissions between different voltage levels in order to meet the compatibility levels at the point of utilisation. This report primarily focuses on controlling or limiting flicker, but a clause is included to address the limitation of rapid voltage changes.

NOTE The boundaries between the various voltage levels may be different for different countries (see IEV 601-01-28) [16]. This report uses the following terms for system voltage:

- low voltage (LV) refers to \(Un \leq 1 \, kV \);
- medium voltage (MV) refers to \(1 \, kV < Un \leq 35 \, kV \);
- high voltage (HV) refers to \(35 \, kV < Un \leq 230 \, kV \);
- extra high voltage (EHV) refers to \(230 \, kV < Un \).

In the context of this report, the function of the system is more important than its nominal voltage. For example, a HV system used for distribution may be given a “planning level” which is situated between those of MV and HV systems.
2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(161),

International Electrotechnical Vocabulary – Chapter 161: Electromagnetic

3 Terms and definitions

For the purpose of this part of IEC 61000, the following definitions apply as well as the definitions in IEC 60050(161).

3.1 agreed power
value of the apparent power of the disturbing installation on which the customer and the system operator or owner agree. In the case of several points of connection, a different value may be defined for each connection point.

3.2 customer
a person, company or organization that operates an installation connected to, or entitled to be connected to, a supply system by a system operator or owner.

3.3 (electromagnetic) disturbance
any electromagnetic phenomenon which, by being present in the electromagnetic environment, can cause electrical equipment to depart from its intended performance.

3.4 disturbance level
the amount or magnitude of an electromagnetic disturbance measured and evaluated in a specified way.

3.5 electromagnetic compatibility (EMC)
ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

NOTE 1 Electromagnetic compatibility is a condition of the electromagnetic environment such that, for every phenomenon, the disturbance emission level is sufficiently low and immunity levels are sufficiently high so that all devices, equipment and systems operate as intended.

NOTE 2 Electromagnetic compatibility is achieved only if emission and immunity levels are controlled such that the immunity levels of the devices, equipment and systems at any location are not exceeded by the disturbance level at that location resulting from the cumulative emissions of all sources and other factors such as circuit impedances. Conventionally, compatibility is said to exist if the probability of the departure from intended performance is sufficiently low. See Clause 4 of IEC 61000-2-1 [20].

NOTE 3 Where the context requires it, compatibility may be understood to refer to a single disturbance or class of disturbances.

NOTE 4 Electromagnetic compatibility is a term used also to describe the field of study of the adverse electromagnetic effects which devices, equipment and systems undergo from each other or from electromagnetic phenomena.