

Edition 2.0 2015-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

BASIC EMC PUBLICATION PUBLICATION FONDAMENTALE EN CEM

Electromagnetic compatibility (EMC) – Part 4-24: Testing and measurement techniques – Test methods for protective devices for HEMP conducted disturbance

Compatibilité électromagnétique (CEM) – Partie 4-24: Techniques d'essai et de mesure – Méthodes d'essai pour les dispositifs de protection pour perturbations conduites IEMN-HA

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100

ISBN 978-2-8322-2971-2

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	5
IN	TRODU	ICTION	7
1	Scop	e	8
2	Norm	native references	8
3	Term	s, definitions and abbreviated terms	8
	3.1	Terms and definitions	8
	3.2	Abbreviated terms	10
4	Test	methods for protective devices (excluding filter) for conducted disturbance	10
	4.1	General	10
	4.2	Test setup	11
	4.3	Pulse generator	11
	4.4	Launching line	11
	4.5	Test fixtures	12
	4.5.1	General	12
	4.5.2	Type A fixtures	12
	4.5.3	Type B fixtures	12
	4.6	Termination	13
	4.7	Oscilloscope	14
	4.8	Test procedure	. 14
	4.8.1	Adjustment of the pulse generator	14
	4.8.2	Verification procedures	14
	4.8.3	Test	15
	4.8.4	Final examination of the DUT	15
	4.9	Referring to this standard	15
5	Meas	surement method for HEMP combination filters	16
	5.1	Verification setup	. 16
	5.2	Measurement setup	. 16
	5.3	Measurement instrument	17
	5.3.1	Pulse generators	17
	5.3.2	Oscilloscope	19
	5.3.3	Current sensors	19
	5.3.4	Test loads	19
	5.4	Test modes required	19
	5.5	Measurement procedure	21
	5.5.1	General	21
	5.5.2	Verification of pulses	21
	5.5.3	Measurement procedure	21
	5.6	Evaluation of test results	22
۸.	5.7 DOX A (Test report	
Aſ		(mormative) investigation for the establishment of a measurement setup	
	A.1		24
	A.2	Variation of the cable connected for the measurement of short-circuit current	24
	A.3	variation of the length of the cable L2 connected for the measurement of residual current	27
	A.4	Variation of load impedance and cable length for connection between load and ground	31

A.5 Variation of the cable length between load and ground	33
Annex B (informative) Test method for the quantitative determination of the direct	36
Ribliography	30 40
	40
Figure 1 – Test setup for testing protective devices	11
Figure 2 – Example of a type B test fixture (universal)	14
Figure 3 – Typical setup for verification of the pulse test level	16
Figure 4 – Example of test setup using one or two shielded enclosures	17
Figure 5 – Example of test setup using a shielded enclosure	17
Figure 6 – Double exponential waveform	19
Figure 7 – Example of wiring setup of a single line DUT	20
Figure 8 – Example of wiring setup for a mutually coupled multi-line DUT	20
Figure A.1 – Setup for calibration	24
Figure A.2 – Peak current calibration results with 9 mm ² cables: 1 000 A \pm 4 %	25
Figure A.3 – Rise time calibration results with 9 mm ² cables	26
Figure A.4 – FWHM calibration results with 9 mm ² cables	26
Figure A.5 – Peak current calibration results with 4 mm ² cables: 1 000 A \pm 8 %	26
Figure A.6 – Rise time calibration results with 4 mm ² cables	27
Figure A.7 – FWHM calibration results with 4 mm ² cables	27
Figure A.8 – Measurement setup for residual current	28
Figure A.9 – Measurement result of peak current with variation of measurement cable L2	29
Figure A.10 – Measurement result of peak rate of rise with variation of measurement	20
Eigure A 11 Measurement result of root action with variation of measurement cable L2	29
Figure A 12 Variation of the position of current sensor 2 on the measurement cable L^2	29
Figure A 12 – Variation of the position of current sensor 2 on the measurement cable $L2 \dots$	30
Figure A.13 – Peak current with variation of cable L2 and at different positions	21
Figure A. 14 – Peak rate of rise with variation of cable L2 and at different positions	21
Figure A. 15 – Note action with variation of cable L2 and at different positions	22
Figure A 17 Measurement result of peak rate of rise with variation of load impedance	32
Figure A $18 - Measurement result of root action with variation of load impedance$	32 32
Figure A 19 – Variation of the length of cable 1.3 connected between load and ground	55
plane	33
Figure A.20 – Measurement result of peak current with variation of measurement cable L3	34
Figure A.21 – Measurement result of peak rate of rise with variation of measurement	-
cable L3	34
Figure A.22 – Measurement result of root action with variation of measurement cable L3	35
Figure B.1 – Test setup with a power divider for testing protective devices	36
Figure B.2 – Waves propagating along the branches	37
Figure B.3 – Simplified test setup for testing protective devices	38

Table 1 – Overview of conducted early-time HEMP (CEP) test requirements defined in	
other specifications	.18

Table 2 – Overview of conducted intermediate-time HEMP (CIP) test requirements defined in other specifications	18
Table 3 – Test mode and DUT wiring setup	21
Table 4 – Performance criteria of filter against early-time HEMP – AC power port with nominal load 2 Ω .	22
Table 5 – Performance criteria of filter against early-time HEMP – DC power port with nominal load 2 Ω .	22
Table 6 – Performance criteria of filter against early-time HEMP – Signal, data and control port with nominal load 50 Ω	23
Table A.1 – Measurement results for the waveform calibration of short-circuit current	25
Table A.2 – Measurement results for variation of the cable length at the measurement points	28
Table A.3 – Measurement results for variation of the load impedance	32
Table A.4 – Measurement results for variation of the cable length between load and ground	34

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-24: Testing and measurement techniques – Test methods for protective devices for HEMP conducted disturbance

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-24 has been prepared by subcommittee 77C: High power transient phenomena, of IEC technical committee 77: Electromagnetic compatibility.

It forms Part 4-24 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107.

This second edition cancels and replaces the first edition published in 1997. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) A new Clause 5: Measurement method for HEMP combination filters, which contains 5.1 Verification setup, 5.2 Measurement setup, 5.3 Measurement instrument, 5.4 Test modes,

5.5 Measurement procedures, 5.6 Evaluation of test results, which introduced performance criteria of filter, and 5.7 Test report.

b) A new informative Annex A: Investigation for the establishment of a measurement setup, which was based on Clause 5.

- 6 -

c) A new informative Annex B: Test method for the quantitative determination of the direct response behaviours of a coaxial surge protector.

The text of this standard is based on the following documents:

FDIS	Report on voting
77C/245/FDIS	77C/250/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61000 series, published under the general title *Electromagnetic compatibility* (*EMC*), can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This standard is part of the IEC 61000 series of standards, according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles) Definitions, terminology

Part 2: Environment

Description of the environment Classification of the environment Compatibility levels

Part 3: Limits

Emission limits Immunity limits

Part 4: Testing and measurement techniques

Measurement techniques Testing techniques

Part 5: Installation and mitigation guidelines

Installation guidelines

Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards, as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

The IEC has initiated the preparation of standardized methods to protect civilian society from the effects of high power electromagnetic (HPEM) environments. Such effects could disrupt systems for communications, electric power, information technology, etc.

This part of IEC 61000 is an international standard that establishes the required test procedures for protective devices for HEMP conducted disturbance, such as gas discharge tubes, varistors, two-port SPDs and HEMP combination filters.

The application of this standard is, however, not dependent on access to other sections and parts of the IEC 61000, except for those specifically referred to.

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-24: Testing and measurement techniques – Test methods for protective devices for HEMP conducted disturbance

1 Scope

This part of IEC 61000 deals with methods for testing protective devices for HEMP conducted disturbance. It includes two-terminal elements, such as gas discharge tubes, varistors, and two-port SPDs, such as HEMP combination filters. It covers testing of voltage breakdown and voltage-limiting characteristics but also methods to measure the residual voltage and/or the residual current, peak rate of rise and root action for the case of very fast changes of voltage and current as a function of time.

This standard does not cover insertion loss measurement methods.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61000-2-10, Electromagnetic compatibility (EMC) – Part 2-10: Environment – Description of HEMP environment – Conducted disturbance

SOMMAIRE

A١	/ANT-P	ROPOS	45
IN	TRODU	CTION	47
1	Doma	aine d'application	48
2	Réfé	ences normatives	48
3	Term	es, définitions et abréviations	48
	3.1	Termes et définitions	48
	3.2	Abréviations	50
4	Méth	odes d'essai des dispositifs de protection (à l'exception d'un filtre) pour	
	pertu	rbations conduites	50
	4.1	Généralités	50
	4.2	Montage d'essai	51
	4.3	Générateur d'impulsions	51
	4.4	Ligne d'emission	52
	4.5		52
	4.5.1		52
	4.5.2	Dispositifs de type R	52
	4.5.5	Charge	JZ
	4.0	Oscilloscope	54
	4.8	Procédure d'essai	54
	4.8.1	Réglage du générateur d'impulsions	54
	4.8.2	Procédures de vérification	54
	4.8.3	Essai	55
	4.8.4	Dernier examen du DUT	55
	4.9	Référence à la présente Norme	55
5	Méth	ode de mesure pour les filtres combinés IEMN-HA	56
	5.1	Montage de vérification	56
	5.2	Montage de mesure	56
	5.3	Appareil de mesure	58
	5.3.1	Générateurs d'impulsions	58
	5.3.2	Oscilloscope	59
	5.3.3	Capteurs de courant	60
	5.3.4	Charges d'essai	60
	5.4	Modes d'essai exigés	60
	5.5	Procédure de mesure	61
	5.5.1		61
	5.5.2	Verification des impulsions	62
	5.5.3	Procedure de mesure	62
	5.0 5.7	Evaluation des resultats d'essais	62
٨		(informativo) Investigation relativo à l'établissement du montage de mosure	03
		Cénérolitée	05
	А. I Д Э	Variation du câble connecté nour la mesure du courant de court circuit	כס קק
	⊼.∠ ∆ २	Variation de la longueur du câble 12 connecté pour la mesure du courant	05
	A. J	résiduel	69

IEC 61000-4-24:2015 © IEC 2015 - 43 -

A.4	Variation de l'impédance de charge et de la longueur de câble pour une connexion entre la charge et le sol	74
A.5	Variation de la longueur de câble entre la charge et le sol	76
Annexe B	(informative) Méthode d'essai pour la détermination quantitative des	
surtensior	nents de reponse directs d'un dispositif coaxial de protection contre les	79
Bibliograp	hie	83
9.up		
Figure 1 -	- Montage d'essai pour dispositifs de protection	51
Figure 2 -	- Exemple d'un dispositif/support d'essai de type B (universel)	54
Figure 3 -	- Montage type de vérification du niveau d'essai d'impulsion	56
Figure 4 -	- Exemple de montage d'essai à l'aide d'une ou de deux enceintes blindées	57
Figure 5 -	- Exemple de montage d'essai à l'aide d'une enceinte blindée	57
Figure 6 -	- Forme d'onde biexponentielle	59
Figure 7 -	- Exemple de montage de câblage d'un DUT à lignes uniques	60
Figure 8 -	- Exemple de montage de câblage d'un DUT multiligne couplé mutuellement	61
Figure A.1	I – Montage en vue de l'étalonnage	65
Figure A.2 1 000 A ±	2 – Résultats d'étalonnage du courant de crête avec des câbles de 9 mm ² : 4 %	66
Figure A.3	3 – Résultats d'étalonnage du temps de montée avec des câbles de 9 mm 2	67
Figure A.4	4 – Résultats d'étalonnage FWHM avec des câbles de 9 mm ²	67
Figure A.5 1 000 A ±	5 – Résultats d'étalonnage du courant de crête avec des câbles de 4 mm ² : 8 %	68
Figure A.6	6 – Résultats d'étalonnage du temps de montée avec des câbles de 4 mm 2	68
Figure A.7	7 – Résultats d'étalonnage FWHM avec des câbles de 4 mm ²	69
Figure A.8	3 – Montage de mesure du courant résiduel	70
Figure A.9 mesure L2	9 – Résultat de mesure du courant de crête avec variation du câble de 2.	71
Figure A.1 variation of	I0 – Résultat de mesure de la valeur de crête du temps de montée avec du câble de mesure L2	71
Figure A.1	11 – Résultat de mesure de l'action racine avec variation du câble de mesure L2	72
Figure A.1	2 – Variation de la position du capteur de courant 2 sur le câble de mesure L2	73
Figure A.1	13 – Courant de crête avec variation du câble L2 et aux différentes positions	73
Figure A.1 différentes	I4 – Valeur de crête du temps de montée avec variation du câble L2 et aux s positions	74
Figure A.1	15 – Action racine avec variation du câble L2 et aux différentes positions	74
Figure A.1 de charge	6 – Résultat de mesure du courant de crête avec variation de l'impédance	75
Figure A.1 variation of	I7 – Résultat de mesure de la valeur de crête du temps de montée avec de l'impédance de charge	75
Figure A.1 charge	8 – Résultat de mesure de l'action racine avec variation de l'impédance de	76
Figure A.1 de masse	19 – Variation de la longueur du câble L3 connecté entre la charge et le plan	76
Figure A.2 mesure L3	20 – Résultat de mesure du courant de crête avec variation du câble de 3	77

Figure A.21 – Résultat de mesure de la valeur de crête du temps de montée avec variation du câble de mesure L37	77
Figure A.22 – Résultat de mesure de l'action racine avec variation du câble de mesure L37	78
Figure B.1 – Montage d'essai avec un répartiteur de puissance en vue de soumettre des dispositifs de protection à essai	79
Figure B.2 – Ondes se propageant le long des branches8	30
Figure B.3 – Montage d'essai simplifié pour l'essai de dispositifs de protection	31
Tableau 1 – Vue d'ensemble des exigences d'essai IEMN-HA initiale conduite (CEP) définies dans d'autres spécifications5	58
Tableau 2 – Vue d'ensemble des exigences d'essai IEMN-HA intermédiaire conduite(CIP) définies dans d'autres spécifications5	59
Tableau 3 – Mode d'essai et montage de câblage du DUT6	31
Tableau 4 – Critères de performance du filtre par rapport à l'IEMN-HA initiale – Accès d'alimentation en courant alternatif avec charge nominale 2 Ω 6	ô2
Tableau 5 – Critères de performance du filtre par rapport à l'IEMN-HA initiale – Accès d'alimentation en courant continu avec charge nominale 2 Ω 6	63
Tableau 6 – Critères de performance du filtre par rapport à l'IEMN-HA initiale – Accès signal, données et contrôle avec charge nominale 50 Ω 6	63
Tableau A.1 – Résultats de mesure pour l'étalonnage de la forme d'onde du courant de court-circuit6	66
Tableau A.2 – Résultats de mesure de la variation de la longueur du câble aux points de mesure7	70
Tableau A.3 – Résultats de mesure de la variation de l'impédance de charge7	75
Tableau A.4 – Résultats de mesure de la variation de la longueur du câble entre la charge et la masse	77

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) -

Partie 4-24: Techniques d'essai et de mesure – Méthodes d'essai pour les dispositifs de protection pour perturbations conduites IEMN-HA

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61000-4-24 a été établie par le sous-comité 77C: Phénomènes transitoires de forte intensité, du comité d'études 77 de l'IEC: Compatibilité électromagnétique.

Elle constitue la Partie 4-24 de l'IEC 61000. Elle a le statut de publication CEM de base conformément au Guide 107 de l'IEC.

Cette deuxième édition annule et remplace la première édition parue en 1997. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) Un nouvel Article 5: Méthode de mesure pour filtres combinés IEMN-HA, qui est divisé comme suit: 5.1 Montage de vérification, 5.2 Montage de mesure, 5.3 Appareil de mesure, 5.4 Modes d'essai, 5.5 Procédures de mesure, 5.6 Evaluation des résultats d'essai avec introduction d'un critère de performance de filtre, 5.7 Rapport d'essai.
- b) Une nouvelle Annexe A informative: Etude de l'établissement d'un montage de mesure qui était basé sur l'Article 5.
- c) Une nouvelle Annexe B informative: Méthode d'essai pour la détermination quantitative des comportements de réponse directs d'un dispositif coaxial de protection contre les surtensions.

Le texte de la présente Norme est issu des documents suivants:

FDIS	Rapport de vote
77C/245/FDIS	77C/250/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 61000, publiées sous le titre général *Compatibilité électromagnétique (CEM)*, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

IMPORTANT – Le logo *"colour inside"* qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

INTRODUCTION

La présente Norme fait partie de la série de normes IEC 61000, conformément à la structure suivante:

Partie 1: Généralités

Considérations générales (introduction, principes fondamentaux) Définitions, terminologie

Partie 2: Environnement

Description de l'environnement Classification de l'environnement Niveaux de compatibilité

Partie 3: Limites

Limites d'émission Limites d'immunité

Partie 4: Techniques d'essai et de mesure

Techniques de mesure Techniques d'essai

Partie 5: Guide d'installation et d'atténuation

Guide d'installation Méthodes et dispositifs d'atténuation

Partie 6: Normes génériques

Partie 9: Divers

Chaque partie est à son tour subdivisée en plusieurs parties, publiées soit comme normes internationales, soit comme spécifications techniques ou rapports techniques, dont certaines ont déjà été publiées en tant que sections. D'autres seront publiées avec le numéro de la partie suivi d'un tiret et d'un second chiffre identifiant la subdivision (exemple: IEC 61000-6-1).

L'IEC a lancé la préparation de méthodes normalisées de protection de la population civile contre les effets des environnements électromagnétiques haute puissance (HPEM). Ces effets peuvent entraîner la rupture de réseaux de communication, de réseaux d'alimentation électrique et de systèmes informatiques, etc.

La présente partie de l'IEC 61000 est une Norme internationale établissant les procédures d'essai exigées pour les dispositifs de protection pour perturbations conduites IEMN-HA, tels que les tubes à décharge, les varistances, les parafoudres à deux accès et les filtres combinés IEMN-HA.

L'utilisation de la présente Norme est cependant indépendante des autres parties et sections de l'IEC 61000, excepté pour les normes spécifiquement nommées en référence.

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) –

Partie 4-24: Techniques d'essai et de mesure – Méthodes d'essai pour les dispositifs de protection pour perturbations conduites IEMN-HA

1 Domaine d'application

La présente partie de l'IEC 61000 définit les méthodes d'essai concernant les dispositifs de protection IEMN-HA contre les perturbations conduites. Elle inclut les éléments à deux bornes, tels que les tubes à décharge, varistances et les parafoudres à deux accès, tels que les filtres combinés IEMN-HA. Elle couvre les essais de caractéristiques de tension de claquage et de limitation de la tension résiduelle incluant les méthodes de mesure de tension résiduelle et/ou de courant résiduel, de la valeur de crête du temps de montée et de l'action racine dans le cas de variations très rapides de tension et de courant en fonction du temps.

La présente Norme ne couvre pas les méthodes de mesure de l'affaiblissement d'insertion.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 61000-2-10, Compatibilité électromagnétique (CEM) – Partie 2-10: Environnement – Description de l'environnement IEMN-HA – Perturbations conduites