INTERNATIONAL STANDARD

Wind energy generation systems –
Part 24: Lightning protection

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.180

ISBN 978-2-8322-6599-4

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission

| CONTENTS |
|-------------------------------|-------------------|
| FOREWORD | 11 |
| 1 Scope | 13 |
| 2 Normative references | 13 |
| 3 Terms and definitions | 15 |
| 4 Symbols and units | 21 |
| 5 Abbreviated terms | 24 |
| 6 Lightning environment for wind turbine | 25 |
| 6.1 General | 25 |
| 6.2 Lightning current parameters and lightning protection levels (LPL) | 25 |
| 7 Lightning exposure assessment| 26 |
| 7.1 General | 26 |
| 7.2 Assessing the frequency of lightning affecting a single wind turbine or a group of wind turbines | 28 |
| 7.2.1 Categorization of lightning events | 28 |
| 7.2.2 Estimation of average number of lightning flashes to a single or a group of wind turbines | 28 |
| 7.2.3 Estimation of average annual number of lightning flashes near the wind turbine \(N_M\) | 31 |
| 7.2.4 Estimation of average annual number of lightning flashes to the service lines connecting the wind turbines \(N_L\) | 32 |
| 7.2.5 Estimation of average annual number of lightning flashes near the service lines connecting the wind turbine \(N_I\) | 32 |
| 7.3 Assessing the risk of damage | 33 |
| 7.3.1 Basic equation | 33 |
| 7.3.2 Assessment of risk components due to flashes to the wind turbine \(S_1\) | 34 |
| 7.3.3 Assessment of the risk component due to flashes near the wind turbine \(S_2\) | 34 |
| 7.3.4 Assessment of risk components due to flashes to a service line connected to the wind turbine \(S_3\) | 35 |
| 7.3.5 Assessment of risk component due to flashes near a service line connected to the wind turbine \(S_4\) | 35 |
| 8 Lightning protection of subcomponents | 36 |
| 8.1 General | 36 |
| 8.1.1 Lightning protection level (LPL) | 36 |
| 8.1.2 Lightning protection zones (LPZ) | 37 |
| 8.2 Blades | 37 |
| 8.2.1 General | 37 |
| 8.2.2 Requirements | 37 |
| 8.2.3 Verification | 38 |
| 8.2.4 Protection design considerations | 38 |
| 8.2.5 Test methods | 41 |
| 8.3 Nacelle and other structural components | 42 |
| 8.3.1 General | 42 |
| 8.3.2 Hub | 42 |
| 8.3.3 Spinner | 42 |
| 8.3.4 Nacelle | 43 |
| 8.3.5 Tower | 43 |
| 8.3.6 Verification methods | 44 |
8.4 Mechanical drive train and yaw system ... 44
8.4.1 General .. 44
8.4.2 Bearings ... 44
8.4.3 Hydraulic systems ... 45
8.4.4 Spark gaps and sliding contacts ... 46
8.4.5 Verification .. 46
8.5 Electrical low-voltage systems and electronic systems and installations .. 46
8.5.1 General .. 46
8.5.2 Equipotential bonding within the wind turbine 50
8.5.3 LEMP protection and immunity levels ... 51
8.5.4 Shielding and line routing ... 52
8.5.5 SPD protection ... 53
8.5.6 Testing methods for system immunity tests 57
8.6 Electrical high-voltage (HV) power systems .. 57
9 Earthing of wind turbines ... 59
9.1 General ... 59
9.1.1 Purpose and scope ... 59
9.1.2 Basic requirements .. 59
9.1.3 Earth electrode arrangements ... 59
9.1.4 Earthing system impedance .. 60
9.2 Equipotential bonding ... 60
9.2.1 General .. 60
9.2.2 Lightning equipotential bonding for metal installations 60
9.3 Structural components .. 61
9.3.1 General .. 61
9.3.2 Metal tubular type tower .. 61
9.3.3 Metal reinforced concrete towers .. 61
9.3.4 Lattice tower .. 61
9.3.5 Systems inside the tower .. 62
9.3.6 Concrete foundation ... 62
9.3.7 Rocky area foundation .. 62
9.3.8 Metal mono-pile foundation .. 63
9.3.9 Offshore foundation ... 63
9.4 Electrode shape dimensions ... 63
9.5 Execution and maintenance of the earthing system 64
10 Personal safety ... 64
11 Documentation of lightning protection system 66
11.1 General ... 66
11.2 Documentation necessary during assessment for design evaluation 66
11.2.1 General .. 66
11.2.2 General documentation .. 66
11.2.3 Documentation for rotor blades ... 66
11.2.4 Documentation of mechanical systems .. 67
11.2.5 Documentation of electrical and electronic systems 67
11.2.6 Documentation of earthing and bonding systems 67
11.2.7 Documentation of nacelle cover, hub and tower lightning protection systems ... 67
11.3 Site-specific information .. 68
11.4 Documentation to be provided in the manuals for LPS inspections 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Manuals</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>Inspection of lightning protection system</td>
<td>68</td>
</tr>
<tr>
<td>12.1</td>
<td>Scope of inspection</td>
<td>68</td>
</tr>
<tr>
<td>12.2</td>
<td>Order of inspections</td>
<td>68</td>
</tr>
<tr>
<td>12.2.1</td>
<td>General</td>
<td>68</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Inspection during production of the wind turbine</td>
<td>69</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Inspection during installation of the wind turbine</td>
<td>69</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Inspection during commissioning of the wind turbine and periodic inspection</td>
<td>69</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Inspection after dismantling or repair of main parts</td>
<td>70</td>
</tr>
<tr>
<td>12.3</td>
<td>Maintenance</td>
<td>71</td>
</tr>
<tr>
<td>A.1</td>
<td>Lighting environment for wind turbines</td>
<td>72</td>
</tr>
<tr>
<td>A.1.1</td>
<td>General</td>
<td>72</td>
</tr>
<tr>
<td>A.1.2</td>
<td>The properties of lightning</td>
<td>72</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Lightning discharge formation and electrical parameters</td>
<td>72</td>
</tr>
<tr>
<td>A.1.4</td>
<td>Cloud-to-ground flashes</td>
<td>73</td>
</tr>
<tr>
<td>A.1.5</td>
<td>Upward initiated flashes</td>
<td>79</td>
</tr>
<tr>
<td>A.2</td>
<td>Lightning current parameters relevant to the point of strike</td>
<td>82</td>
</tr>
<tr>
<td>A.3</td>
<td>Leader current without return stroke</td>
<td>83</td>
</tr>
<tr>
<td>A.4</td>
<td>Lightning electromagnetic impulse, LEMP, effects</td>
<td>83</td>
</tr>
<tr>
<td>B.1</td>
<td>General</td>
<td>84</td>
</tr>
<tr>
<td>B.2</td>
<td>Methodology to estimate the average annual flashes or strokes to the wind turbines of a wind farm and upward lightning activity in wind turbines</td>
<td>84</td>
</tr>
<tr>
<td>B.2.1</td>
<td>General</td>
<td>84</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Methodology to determine average annual flashes to turbines of a wind farm estimation by increase of the location factor to consider upward lightning from wind turbines</td>
<td>84</td>
</tr>
<tr>
<td>B.2.3</td>
<td>Upward lightning percentage in wind farms</td>
<td>88</td>
</tr>
<tr>
<td>B.3</td>
<td>Explanation of terms</td>
<td>88</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Damage and loss</td>
<td>88</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Composition of risk</td>
<td>90</td>
</tr>
<tr>
<td>B.3.3</td>
<td>Assessment of risk components</td>
<td>90</td>
</tr>
<tr>
<td>B.3.4</td>
<td>Frequency of damage</td>
<td>91</td>
</tr>
<tr>
<td>B.3.5</td>
<td>Assessment of probability, (P_X), of damage</td>
<td>92</td>
</tr>
<tr>
<td>B.4</td>
<td>Assessing the probability of damage to the wind turbine</td>
<td>93</td>
</tr>
<tr>
<td>B.4.1</td>
<td>Probability, (P_{AT}), that a lightning flash to a wind turbine will cause dangerous touch and step voltage</td>
<td>93</td>
</tr>
<tr>
<td>B.4.2</td>
<td>Probability, (P_{AD}), that a lightning flash to the wind turbine will cause injury to an exposed person on the structure</td>
<td>94</td>
</tr>
<tr>
<td>B.4.3</td>
<td>Probability, (P_{B}), that a lightning flash to the wind turbine will cause physical damage</td>
<td>94</td>
</tr>
<tr>
<td>B.4.4</td>
<td>Probability, (P_{C}), that a lightning flash to the wind turbine will cause failure of internal systems</td>
<td>96</td>
</tr>
<tr>
<td>B.4.5</td>
<td>Probability, (P_{M}), that a lightning flash near the wind turbine will cause failure of internal systems</td>
<td>96</td>
</tr>
<tr>
<td>B.4.6</td>
<td>Probability, (P_{U}), that a lightning flash to a service line will cause injury to human beings owing to touch voltage</td>
<td>96</td>
</tr>
<tr>
<td>B.4.7</td>
<td>Probability, (P_{Y}), that a lightning flash to a service line will cause physical damage</td>
<td>97</td>
</tr>
</tbody>
</table>
Annex F (informative) Selection and installation of a coordinated SPD protection in wind turbines

- **F.1** Location of SPDs ... 146
- **F.2** Selection of SPDs ... 146
- **F.3** Installation of SPDs ... 146
- **F.4** Environmental stresses of SPDs .. 147
- **F.5** SPD status indication and SPD monitoring in case of an SPD failure ... 148
- **F.6** Selection of SPDs with regard to protection level \(U_p \) and system level immunity ... 148
- **F.7** Selection of SPDs with regard to overvoltages created within wind turbines ... 148
- **F.8** Selection of SPDs with regard to discharge current \(I_n \) and impulse current \(I_{imp} \) ... 148

Annex G (informative) Information on bonding and shielding and installation technique

- **G.1** Additional information on bonding .. 150
- **G.2** Additional information on shielding and installation technique ... 151

Annex H (informative) Testing methods for system level immunity tests

- **H.1** General ... 154
- **H.2** Types of arrangement .. 161
- **H.3** Frequency dependence on earthing impedance 163
- **H.4** Earthing resistance expressions for different electrode configurations ... 164

Annex I (informative) Earth termination system

- **I.1** General ... 159
- **I.1.1** Types of earthing systems .. 159
- **I.1.2** Construction .. 159
- **I.2** Electrode shape dimensions .. 161
 - **I.2.1** Type of arrangement .. 161
 - **I.2.2** Frequency dependence on earthing impedance 163
- **I.3** Earthing resistance expressions for different electrode configurations ... 164

Annex J (informative) Example of defined measuring points

- **J.1** General ... 167

Annex K (informative) Classification of lightning damage based on risk management

- **K.1** General ... 169
- **K.2** Lightning damage in blade .. 169
 - **K.2.1** Classification of blade damage due to lightning 169
 - **K.2.2** Possible cause of blade damage due to lightning 170
 - **K.2.3** Countermeasures against blade damage due to lightning 171
- **K.3** Lightning damage to other components 173
 - **K.3.1** Classification of damage in other components due to lightning ... 173
 - **K.3.2** Countermeasures against lightning damage to other components ... 173
- **K.4** Typical lightning damage questionnaire 173
 - **K.4.1** General ... 173
 - **K.4.2** Sample of questionnaire .. 173

Annex L (informative) Monitoring systems

- **L.1** General ... 177

Annex M (informative) Guidelines for small wind turbines

- **M.1** General ... 179
 - **M.2** Similarity constraints .. 180

Annex N (informative) Guidelines for verification of blade similarity

- **N.1** General ... 180
 - **N.2** Similarity constraints .. 180

Annex O (informative) Guidelines for validation of numerical analysis methods

- **O.1** General ... 183
 - **O.2** Blade voltage and current distribution .. 183
 - **O.3** Indirect effects analysis .. 184
Annex P (informative) Testing of rotating components ... 185

P.1 General... 185
P.2 Test specimen .. 185
P.2.1 Test specimen representing a stationary / quasi stationary bearing 185
P.2.2 Test specimen representing a rotating bearing .. 185
P.3 Test setup ... 185
P.3.1 Test set-up representing a stationary/quasi-stationary bearing 185
P.3.2 Test set-up representing a rotating bearing .. 186
P.4 Test procedure.. 187
P.5 Pass/fail criteria .. 188

Annex Q (informative) Earthing systems for wind farms ... 189

Bibliography.. 190

Figure 1 – Collection area of the wind turbine .. 30
Figure 2 – Example of collection area for a complete wind farm (A_DWF) with 10 wind
turbines (black points) considering overlapping .. 31
Figure 3 – Collection area of wind turbine of height H_a and another structure of height
H_b connected by underground cable of length L_c ... 33
Figure 4 – Examples of possible SPM (surge protection measures) 49
Figure 5 – Interconnecting two LPZ 1 using SPDs ... 50
Figure 6 – Interconnecting two LPZ 1 using shielded cables or shielded cable ducts 50
Figure 7 – Magnetic field inside an enclosure due to a long connection cable from
enclosure entrance to the SPD ... 53
Figure 8 – Additional protective measures .. 54
Figure 9 – Examples of placement of HV arresters in two typical main electrical circuits
of wind turbines .. 58
Figure A.1 – Processes involved in the formation of a downward initiated cloud-to-
ground flash .. 74
Figure A.2 – Typical profile of a negative cloud-to-ground flash 75
Figure A.3 – Definitions of short stroke parameters (typically $T_2 < 2$ ms) 75
Figure A.4 – Definitions of long stroke parameters (typically 2 ms < $T_{long} < 1$ s) 76
Figure A.5 – Possible components of downward flashes (typical in flat territory and to
lower structures) .. 78
Figure A.6 – Typical profile of a positive cloud-to-ground flash 79
Figure A.7 – Processes involved in the formation of an upward initiated cloud-to-
ground flash during summer and winter conditions ... 79
Figure A.8 – Typical profile of a negative upward initiated flash 80
Figure A.9 – Possible components of upward flashes (typical to exposed and/or higher
structures) ... 80
Figure B.1 – Winter lightning world map based on LLS data and weather conditions 81
Figure B.2 – Detailed winter lightning maps based on LLS data and weather conditions .. 86
Figure B.3 – Ratio h/d description .. 87
Figure C.1 – Types of wind turbine blades ... 101
Figure C.2 – Lightning protection concepts for large modern wind turbine blades 104
Figure C.3 – Voltages between lightning current path and sensor wiring due to the
mutual coupling and the impedance of the current path .. 107
Figure D.1 – Example of initial leader attachment test setup A 115
Figure D.2 – Possible orientations for the initial leader attachment test setup A
Figure D.3 – Definition of the blade length axis during strike attachment tests
Figure D.4 – Example of the application of angles during the HV test
Figure D.5 – Example of leader connection point away from test specimen
Figure D.6 – Initial leader attachment test setup B
Figure D.7 – Typical switching impulse voltage rise to flashover (100 µs per division)
Figure D.8 – Subsequent stroke attachment test arrangement
Figure D.9 – Lightning impulse voltage waveform
Figure D.10 – Lightning impulse voltage chopped on the front
Figure D.11 – HV electrode positions for the subsequent stroke attachment test
Figure D.12 – High-current test arrangement for the arc entry test
Figure D.13 – Typical jet diverting test electrodes
Figure D.14 – Example of an arrangement for conducted current tests
Figure E.1 – Examples of generic blade lightning environment definition
Figure E.2 – Rolling sphere method applied on wind turbine
Figure E.3 – Mesh with large mesh dimension for nacelle with GFRP cover
Figure E.4 – Mesh with small mesh dimension for nacelle with GFRP cover
Figure E.5 – Two cabinets both defined as LPZ 2 connected via the shield of a shielded cable
Figure E.6 – Example: division of wind turbine into different lightning protection zones
Figure E.7 – Example of how to document a surge protection measures (SPM) system by division of the electrical system into protection zones with indication of where circuits cross LPZ boundaries and showing the long cables running between tower base and nacelle
Figure F.1 – Point-to-point installation scheme
Figure F.2 – Earthing connection installation scheme
Figure G.1 – Two control cabinets located on different metallic planes inside a nacelle
Figure G.2 – Magnetic coupling mechanism
Figure G.3 – Measuring of transfer impedance
Figure H.1 – Example circuit of a SPD discharge current test under service conditions
Figure H.2 – Typical test set-up for injection of test current
Figure H.3 – Example circuit of an induction test for lightning currents
Figure I.1 – Minimum length (l_1) of each earth electrode according to the class of LPS
Figure I.2 – Frequency dependence on the impedance to earth
Figure J.1 – Example of measuring points
Figure K.1 – Recommended countermeasures schemes according to the incident classification
Figure K.2 – Blade outlines for marking locations of damage
Figure N.1 – Definitions of blade aerofoil nomenclature
Figure O.1 – Example geometry for blade voltage and current distribution simulations
Figure O.2 – Example geometry for nacelle indirect effects simulations
Figure P.1 – Possible test setup for a pitch bearing
Figure P.2 – Possible injection of test current into a pitch bearing
Figure P.3 – Possible test setup for a main bearing
Figure P.4 – Example measurement of the series resistance of the test sample
Table 1 – Maximum values of lightning parameters according to LPL (adapted from IEC 62305-1) .. 25
Table 2 – Minimum values of lightning parameters and related rolling sphere radius corresponding to LPL (adapted from IEC 62305-1) .. 26
Table 3 – Collection areas A_L and A_I of service line depending on whether aerial or buried .. 33
Table 4 – Parameters relevant to the assessment of risk components for wind turbine (corresponds to IEC 62305-2) .. 36
Table 5 – Verification of bearing and bearing protection design concepts .. 45
Table 6 – LPS General inspection intervals ... 70
Table A.1 – Cloud-to-ground lightning current parameters .. 77
Table A.2 – Upward initiated lightning current parameters .. 81
Table A.3 – Summary of the lightning threat parameters to be considered in the calculation of the test values for the different LPS components and for the different LPL ... 82
Table B.1 – Recommended values of individual location factors .. 85
Table B.2 – Range of upward lightning activity as a function of winter lightning activity for wind farm located in flat terrain .. 88
Table B.3 – Values of probability, P_A, that a lightning flash to a wind turbine will cause shock to human beings owing to dangerous touch and step voltages (corresponds to IEC 62305-2) .. 93
Table B.4 – Values of reduction factor r_t as a function of the type of surface of soil or floor (corresponds to IEC 62305-2) .. 93
Table B.5 – Values of factor P_o according to the position of a person in the exposed area (corresponds to IEC 62305-2) .. 94
Table B.6 – Values of probability, P_{LPS}, depending on the protection measures to protect the exposed areas of the wind turbine against direct lightning flash and to reduce physical damage (corresponds to IEC 62305-2) .. 94
Table B.7 – Values of probability P_S that a flash to a wind turbine will cause dangerous sparking (corresponds to IEC 62305-2) .. 95
Table B.8 – Values of reduction factor r_p as a function of provisions taken to reduce the consequences of fire (corresponds to IEC 62305-2) .. 95
Table B.9 – Values of reduction factor r_f as a function of risk of fire of the wind turbine (corresponds to IEC 62305-2) .. 95
Table B.10 – Values of probability P_{LI} depending on the line type and the impulse withstand voltage U_W of the equipment (corresponds to IEC 62305-2) .. 98
Table B.11 – Loss values for each zone (corresponds to IEC 62305-2) .. 99
Table B.12 – Typical mean values of L_T, L_D, L_F and L_O (corresponds to IEC 62305-2) .. 100
Table C.1 – Material, configuration and minimum nominal cross-sectional area of air-termination conductors, air-termination rods, earth lead-in rods and down conductors (corresponds to IEC 62305-3) .. 109
Table C.2 – Physical characteristics of typical materials used in lightning protection systems (corresponds to IEC 62305-1) .. 110
Table C.3 – Temperature rise [K] for different conductors as a function of W/R (corresponds to IEC 62305-1) .. 111
Table C.4 – Range of distribution of direct strikes from field campaigns collecting data on attachment distribution vs. the distance from the tip of wind turbine blades, 39 m to 45 m blades with and without CFRP .. 112
Table D.1 – Test current parameters corresponding to LPL I .. 131
Table D.2 – Test current parameters for winter lightning exposure testing (duration maximum 1 s) ... 131
Table D.3 – Test current parameters corresponding to LPL I .. 135
Table D.4 – Test current parameters corresponding to LPL I (for flexible paths) .. 135
Table D.5 – Test current parameters for winter lightning exposure testing (duration maximum 1 s) ... 136
Table E.1 – Blade area definition for the example in concept A .. 139
Table E.2 – Blade area definition for the example in concept B .. 139
Table E.3 – Definition of lightning protection zones according to IEC 62305-1 .. 140
Table F.1 – Discharge and impulse current levels for TN systems given in IEC 60364-5-53 .. 149
Table F.2 – Example of increased discharge and impulse current levels for TN systems .. 149
Table I.1 – Impulse efficiency of several ground rod arrangements relative to a 12 m vertical ground rod (100 %).. 164
Table I.2 – Symbols used in Tables I.3 to I.6 .. 164
Table I.3 – Formulae for different earthing electrode configurations .. 165
Table I.4 – Formulae for buried ring electrode combined with vertical rods .. 165
Table I.5 – Formulae for buried ring electrode combined with radial electrodes .. 166
Table I.6 – Formulae for buried straight horizontal electrode combined with vertical rods .. 166
Table J.1 – Measuring points and resistances to be recorded .. 168
Table K.1 – Classification of blade damage due to lightning .. 170
Table K.2 – Matrix of blade damages due to lightning, taking account of risk management .. 172
Table K.3 – Classification of damage to other components due to lightning .. 173
Table L.1 – Considerations relevant for wide area lightning detection systems .. 177
Table L.2 – Considerations relevant for local active lightning detection systems .. 178
Table L.3 – Considerations relevant for local passive lightning detection systems .. 178
Table N.1 – Items to be checked and verified when evaluating similarity .. 181
Table P.1 – Test sequence for high current testing of rotating components .. 188
INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND ENERGY GENERATION SYSTEMS –

Part 24: Lightning protection

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-24 has been prepared by IEC technical committee 88: Wind energy generation systems.

This second edition cancels and replaces the first edition, published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) it is restructured with a main normative part, while informative information is placed in annexes.
The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/709/FDIS</td>
<td>88/713/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61400 series, published under the general title Wind energy generation systems, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
WIND ENERGY GENERATION SYSTEMS –

Part 24: Lightning protection

1 Scope

This part of IEC 61400 applies to lightning protection of wind turbine generators and wind power systems. Refer to Annex M guidelines for small wind turbines.

This document defines the lightning environment for wind turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included.

Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided.

Guidance regarding personal safety is provided.

Guidelines for damage statistics and reporting are provided.

Normative references are made to generic standards for lightning protection, low-voltage systems and high-voltage systems for machinery and installations and electromagnetic compatibility (EMC).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-4-44, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

IEC 60364-5-53, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control

IEC 60364-5-54, Low-voltage electrical installations – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements and protective conductors

IEC 60364-6, Low-voltage electrical installations – Part 6: Verification

IEC TS 60479-1, Effects of current on human beings and livestock – Part 1: General aspects

IEC TR 60479-4, Effects of current on human beings and livestock – Part 4: Effects of lightning strokes

IEC 60664-1, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 61000 (all parts), Electromagnetic compatibility (EMC)