

Edition 1.0 2017-07

TECHNICAL SPECIFICATION

Electrical energy storage (EES) systems – Part 5-1: Safety considerations for grid-integrated EES systems – General specification

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.020.30

ISBN 978-2-8322-4565-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	FOREWORD					
IN	INTRODUCTION					
1	Scope					
2	Normative references					
3	Term	Terms and definitions				
4		guidelines for safety aspects of EES systems				
5		rd considerations for EES systems				
U	5.1	Electrical hazards				
	5.2	Mechanical hazards				
	5.3	Other hazards				
	5.3.1	Explosion hazards				
	5.3.2					
	5.3.3					
	5.3.4	Temperature hazards				
	5.3.5	•				
	5.3.6	Unsuitable working conditions	22			
6	EES	system risk assessment				
	6.1	EES system structure	22			
	6.1.1	General characteristics				
	6.1.2	Specific characteristics	22			
	6.2	Description of storage conditions	23			
	6.2.1	Types of grids	23			
	6.2.2	Type of applications	23			
	6.2.3	Location	23			
	6.2.4	Vulnerable elements	24			
	6.2.5					
	6.2.6					
	6.2.7					
	6.2.8					
	6.3	Risk analysis				
	6.3.1	General				
	6.3.2					
_	6.3.3	, , , , , , , , , , , , , , , , , , ,				
7	•	irements necessary to reduce risks				
	7.1	General measures to reduce risks				
	7.2	Preventive measures against damage to neighbouring inhabitants				
	7.3	Preventive measures against damage to workers and residents				
	7.3.1 7.3.2	Protection from electrical hazards				
		· · · · · · · · · · · · · · · · · · ·				
	7.3.3 7.4					
	7.4 7.5	Over current protection design EES system disconnection and shutdown				
	7.5 7.5.1	General				
	7.5.1					
	1.0.2					

	7.5.3	Stopped state	
	7.5.4	EES system shutdown	36
	7.5.5	Cyber security	37
	7.5.6	Partial disconnection	37
	7.5.7	Equipment guidelines for emergency shutdown	37
7	7.6	Preventive maintenance	38
7	7.7	Staff training	38
7	7.8	Safety design	
	7.8.1	General	
	7.8.2	Initial safety design and subsequent design revision	
	7.8.3	Design revision for minor and major system changes	40
8	Syste	m testing	40
8	3.1	General	40
8	3.2	Auxiliary system malfunction	42
8	3.3	EES control subsystem malfunction	42
8	3.4	EES system internal communication malfunction	42
8	8.5	EES system external communication malfunction	43
9	Guide	elines and manuals	43
Ann	iex A (informative) Main risks of different storage technologies	45
A	A .1	Pumped hydro storage	45
ŀ	٩.2	Flywheel	45
A	٩.3	Secondary batteries	46
A	٨.4	Hydrogen and synthetic natural gas	47
ŀ	۹.5	Other EES system technologies	48
Bibl	iograp	hy	49
			47
-		General description of the approach to address hazards in EES systems	
•		Islanding of the EES system	
-		Iterative checking sequence in general risk assessment procedures	
Figu	ure 4 –	General risk reduction measures to minimize hazards	29
		Damage propagation from an incident to a big accident, and layered to minimize damages	29
		Examples of different EES system architectures	
-		Initial safety design and design revision	
Figi	ure 8 –	EES system architecture in the two main EESS configurations	41
Tab	le A.1	 Main risk scenarios for pumped hydro storage 	45
Tab	le A.2	– Main risk scenarios for flywheel	46

Table A.3 – Example of main risk scenarios for lithium-ion batteries47Table A.4 – Main risk scenarios for hydrogen storage48

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL ENERGY STORAGE (EES) SYSTEMS -

Part 5-1: Safety considerations for grid-integrated EES systems – General specification

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62933-5-1, which is a technical specification, has been prepared by IEC technical committee TC 120: Electrical Energy Storage (EES) Systems.

IEC TS 62933-5-1:2017 © IEC 2017 - 5 -

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
120/89/DTS	120/100/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62933 series, published under the general title *Electrical energy storage (EES) systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Many governments' plans for how electricity will be generated and managed in the future have been determined. Such current plans cannot be implemented without long-term storage with capacities in the multi-MWh range.

There are a number of types of storage technologies that have emerged. Examples of these technologies are pumped hydro storage (PHS), electrochemical batteries, flywheel storage systems and hydrogen and synthetic natural gas (SNG). Pumped hydro storage has been widely used in terms of the total amount of the stored energy. A flywheel is a model of kinetic energy storage with a high power density, excellent cycle stability and long life. While some flywheels are intended for short term operation, others can operate over longer periods of time of up to a few hours. Batteries require development primarily to decrease cost, and for some technologies to increase energy density as well. Hydrogen and synthetic natural gas (SNG) added to natural gas are likely to be essential elements of future electric grids because of their energy storage duration and capacity. Hydrogen and SNG should be further researched and developed across a broad front, including physical facilities, interactions with existing uses of gas for supply and distribution network, optimal chemical processes, safety, reliability and efficiency. The IEC White Paper "Electrical Energy Storage" (2011-12) may provide further background information on concerned EES systems.

The IEC expects to keep pace, as in other areas in the past, with the need for international consensus standards for the safety of new storage technologies. It encourages regulators to anticipate the requirement to guarantee the safety of these technologies, and to contribute to shaping suitable international standards upon which harmonized regulations may be based.

For mature EES systems various IEC standards exist covering technical features, testing and system integration. For other technologies there are only a few standards, covering special topics.

Up to now no general standard addressing safety for EES system integration into an electrical grid has been developed.

The rapid growth and the new technologies involved in electrical energy storage in the near future, as well as their installation by consumers will impose particular requirements for safety. At the same time, society and governments will need assurance of safety before the muchneeded systems can be deployed.

This document stands as a decisive step towards the gradual alignment with specific technologies and applications concerning the safety of packaged or site-assembled grid-integrated EES system.

ELECTRICAL ENERGY STORAGE (EES) SYSTEMS -

Part 5-1: Safety considerations for grid-integrated EES systems – General specification

1 Scope

This part of IEC 62933, which is a Technical Specification, specifies safety considerations (e.g. hazards identification, risk assessment, risk mitigation) applicable to EES systems integrated with the electrical grid.

This document provides criteria to foster the safe application and use of electric energy storage systems of any type or size intended for grid-integrated applications

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62933-1¹, *Electrical energy storage (EES) systems – Part 1: Terminology*

¹ Under preparation. Stage at the time of publication: IEC CDV 62933-1:2017.