Recommended Practice for Photobiological Safety for Lamps and Lamp Systems – Measurement Techniques
Recommended Practice for Photobiological Safety for Lamps and Lamp Systems-Measurement Techniques

Publication of this Recommended Practice has been approved by IES.
Suggestions for revisions should be directed to IES

Prepared by:
The Photobiology Committee of the Illuminating Engineering Society
DISCLAIMER

IES publications are developed through the consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on lighting recommendations. While the IES administers the process and establishes policies and procedures to promote fairness in the development of consensus, it makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

The IES disclaims liability for any injury to persons or property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document.

In issuing and making this document available, the IES is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the IES undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The IES has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the IES list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or statement of compliance with the requirements of this document shall not be attributable to the IES and is solely the responsibility of the certifier or maker of the statement.
Recommended Practice for Photobiological Safety for Lamps and Lamp Systems - General Requirements

Re-affirmed by
The IES Photobiology Committee

David Sliney, Chair

R. Bergman D. Gross* R. Nigrello* R. Vincent
G. Brainard H. Hoover M. Phillips* S. Wengratis
J. Bullough A. Jackson T. Pocock M. Wolbarsht
A. Clarke R. Landry* J. Roberts* E. Yandek
R. Collins* R. Levin R. Sayre S. Zigman*
G. Costa* A. Lewis* J. Sheehy * Advisory
R. Daubach* M. Mainster* R. Soler*
D. Dubiel* S. Miller K. Stekr*
J. Fischer* S. Mintz A. Thompson
P. Forbes J. O'Hagan J. Urbanowski*

AMERICAN NATIONAL STANDARD

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether that person has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation to any American National Standard. Moreover, no person shall have the right or authority to issue and interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Prepared by the IES Photobiology Committee

George C. Brainard, Chair
Sharon Miller, Vice Chair

D. S. Berger
K. H. Canning
D. Ciolkosz
A. M. Clarke
R. G. Collins*
R. O. Daubach*
H. D. Edmunds*
H. Edwards
D. H. Epley
P. D. Forbes
D.C. Gross*
H. L. Hoover
R. Kaiser*
R. Landry*
R. E. Levin
A. L. Lewis*
R. D. Liddle*
S. L. Martel
S. L. Mintz
C. E. Moss
C. C. Mpelkas
A. C. Rousseau
R. M. Sayre
R. A. Schiele*
J. B. Sheehy
D. H. Sliney
A. Thompson
F. Urbach
R. Vincent
M. Waxler*
D. E. Wiedrich
M. L. Wolbarsht
A. M. Zielinsky
S. Zigman*

* Advisory

Special thanks to David Gross, Chair of the authoring task force and contributors: Dan Berger, Rolf Bergman, Kevin Carr, David Ellis, Anne Geogalas, Herbert Hoover, Ralph Kaiser, Robert Landry, Robert Levin, Teresa Mott West, David Sliney, Ambler Thompson, Richard Young.
Contents

1.0 Introduction ... 1

2.0 Scope ... 1

3.0 References .. 1
 3.1 Normative References .. 1
 3.2 General References .. 2

4.0 Measurement Conditions .. 2
 4.1 Lamp Seasoning .. 2
 4.2 Test Environment ... 2
 4.3 Temperature ... 2
 4.4 Drafts ... 2
 4.5 Extraneous Radiation .. 2

4.6 Lamp and Lamp System Operation 3
 4.6.1 Lamp Operation ... 3
 4.6.2 Lamp System Operation .. 3
 4.6.3 Safety .. 3

5.0 Measurement Instrumentation ... 3
 5.1 Recommended Measurement Instrumentation - Double Monochromator ... 3
 5.1.1 Instrument Spectral Response 3
 5.1.2 Wavelength Accuracy .. 4
 5.1.3 Stray Radiant Power .. 4
 5.1.4 Input Optics Recommendation: Integrating Sphere ... 4
 5.1.4.1 Polarization .. 5
 5.1.4.2 Angular Response .. 5
 5.1.4.3 Monochromator Input 5
 5.1.5 Calibration Sources ... 5

 5.2 Broadband Detector .. 5
 5.2.1 An Example of Combined Instrument Testing ... 5

5.3 Instrument Limitations ... 5
 5.3.1 An Example of a Spectroradiometer System 6

5.4 Linearity ... 6

5.5 Source Size Measurement .. 6

5.6 Pulse Width Measurement .. 6

6.0 Idealized Measurement Procedure 6
 6.1 Irradiance Measurement .. 6
 6.1.1 Ideal Instrument .. 6
 6.1.2 Conceptual Realization ... 7
 6.1.3 Application .. 7

 6.2 Spectral Irradiance Measurement 7
 6.2.1 Geometry .. 7
 6.2.2 Detector ... 7
 6.2.3 Application .. 7

 6.3 Radiance Measurement .. 7
 6.3.1 Ideal Instrument .. 7
 6.3.2 Conceptual Realization ... 8
 6.3.3 Application .. 8

 6.4 Spectral Radiance Measurement 8
Recommended Practice for Photobiological Safety of Lamps and Lamp Systems—Measurement Techniques

1.0 INTRODUCTION

This standard is the second in a series of standards relating to the photobiological safety of lamps and lamp systems and is devoted to measurement of sources for the purpose of hazard evaluation.

Following the recommendations of this standard, an experienced practitioner with adequate equipment and time will achieve precision and accuracy necessary for the classification of lamps and lamp systems and the verification of results.

The measurement of optical radiation for the purpose of computing photobiological effective quantities as used in the ANSI/IES RP-27 series poses a significant challenge. Photobiological action spectra, such as the UV Hazard Weighting Function, \(S(\lambda) \), have rapidly changing values with slight changes in wavelength. Furthermore, sources such as lamps with glass envelopes have rapidly increasing output within the same ultraviolet wavelength band where the UV Hazard Weighting Function \(S(\lambda) \) is rapidly decreasing. This can be seen in Annex C, Figure C-5. Hence, substantial inaccuracies in weighted results can arise from small measurement uncertainties.

The testing done for this series of standards shall include a full analysis of the uncertainty in the results. This requirement leads to several corollary requirements.

- The testing shall be done by persons experienced in radiometry.
- The equipment used shall be fully characterized.
- The testing shall be scrutinized for all influences and sources of error.

This standard recommends a double monochromator system for measurements used in classifying sources, although such instrumentation may not be practical for some types of testing. The standard therefore provides guidance on the use of other methods and when they may be appropriate. Alternative measurement methods described shall be used with full understanding of the limitations of each, and the method selected should be traceable back to spectral measurements. Further, the testing shall include a full analysis of the uncertainty of the results. The equipment used shall be fully characterized and all sources of error documented.

2.0 SCOPE

The ANSI/IES RP-27 series of standards applies to all electrically powered sources of optical radiation that emit in the wavelength range from 200 nm to 3,000 nm. The standards do not apply to any lasers or to those light emitting diodes used in optical fiber communication systems.

This standard is to be used by the radiometrist for guidance regarding special problems related to photobiological hazard measurements. Additionally, specific recommendations are included to provide consistency and to reduce test design time and effort.

It is impractical for this standard to teach all of the concepts or provide all experience needed to make accurate photobiological safety measurements.

3.0 REFERENCES

3.1 Normative References

The following documents contain provisions which, through reference in this text, constitute provisions of the American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

