Recommended Practice for Museum Lighting
Recommended Practice for Museum Lighting
DISCLAIMER

IES publications are developed through the consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on lighting recommendations. While the IES administers the process and establishes policies and procedures to promote fairness in the development of consensus, it makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

The IES disclaims liability for any injury to persons or property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document.

In issuing and making this document available, the IES is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the IES undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The IES has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the IES list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or statement of compliance with the requirements of this document shall not be attributable to the IES and is solely the responsibility of the certifier or maker of the statement.
Approved by ANSI that the requirements for due process, consensus, and other criteria have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether that person has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation to any American National Standard. Moreover, no person shall have the right or authority to issue and interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Contents

Foreword: Museums – By Howard Brandston .. 1

1.0 Introduction to Museum Design .. 1
 1.1 Integrated Design ... 2
 1.1.1 Collaboration with Museum Professionals .. 2
 1.1.2 Collaboration with Architects, Engineers, Media Designers, and Contractors 2

2.0 Museum Categories and Criteria For Lighting Design Success 3
 2.1 Types of Museums and Art Galleries .. 3
 2.2 Criteria for Successful Museum Lighting ... 4

3.0 Controllable Qualities of Light .. 4
 3.1 Illuminance (And Related Properties) ... 5
 3.1.1 Illuminance Criteria ... 6
 3.1.2 Luminance ... 7
 3.1.3 Irradiance ... 7
 3.2 Light Distribution .. 7
 3.2.1 Luminaire Photometry .. 9
 3.2.2 Controlling the Distribution of Light .. 10
 3.2.3 IES Method for Creating Focus .. 11
 3.3 Color ... 13
 3.3.1 Color Assessment Factor 1: The Effect of Illuminance on Color Appearance ... 14
 3.3.2 Color Assessment Factor 2: Chromaticity .. 14
 3.3.3 Color Assessment Factor 3: Color Rendering ... 18
 3.3.4 Visual Assessment of Color Quality ... 21
 3.3.5 Conclusion .. 23
 3.4 Movement .. 23
 3.5 Angle ... 24
 3.5.1 Modeling of Three-Dimensional Forms ... 24
 3.5.2 Location of Luminaires .. 24
 3.5.3 Lighting the Background ... 27
 3.5.4 You Cannot Light a Mirror .. 27
 3.5.5 Sparkle and Nuisance Glare ... 28
 3.5.6 Direct Glare .. 28
 3.5.7 Veiling Reflections (Reflected Glare) ... 29
 3.5.8 Spatial Brightness Appearance .. 29
 3.5.9 Glare Summary ... 29
 3.6 Controllable Qualities of Light: Summary ... 29
4.0 Preservation of Light-Sensitive Materials .. 29

4.1 Damage Factor 1: A Material’s Susceptibility to Light ... 30
 4.1.1 General Susceptibility to Damage Based on the SPD of the Light Source 30
 4.1.2 Relative Rate of Damage Based on the Extent of Previous Exposure 31
 4.1.3 Relative Rate of Damage over Time, Based on the Light Sensitivity of an Object 31

4.2 Damage Factor 2: The Concentration of Irradiance on the Surface of a Material 32
 4.2.1 Illuminance ... 32

4.3 Damage Factor 3: Duration of Exposure and The Principle of Reciprocity 33

4.4 Damage Factor 4: The Spectral Power Distribution of Light Sources (UV, IR, and Visible) . 34
 4.4.1 Ultraviolet (UV) Radiation .. 34
 4.4.2 Infrared (IR) Radiation and Thermal Management .. 35
 4.4.3 Spectrum of Visible Radiation ... 36
 4.4.4 Specific Susceptibility to Damage Based on Light Source Spectrum 37

4.5 Preservation of Light-Sensitive Materials: Summary .. 38

5.0 The Lighting Design Process .. 38

5.1 Lighting Concept: Pre-Design Phase .. 39

5.2 Schematic Design: Assessment Phase .. 40

5.3 Design Development: Defining Solutions Phase ... 41

5.4 Construction Documentation: Final Design Phase .. 41

5.5 Contract Administration: Commissioning and Installation Phase 41

5.6 Project Completion: Reflection on Design and Lessons Learned 42

6.0 Typical Lighting Solutions For Museum Exhibitions .. 42

6.1 Flat Objects On Vertical Surfaces ... 42
 6.1.1 Wall Wash ... 43
 6.1.2 Spotlights .. 44

6.2 Large-Scale Three-Dimensional Objects .. 44
 6.2.1 Minimizing Glare. ... 44

6.3 Exhibit Cases .. 45
 6.3.1 Built-In Cases ... 45
 6.3.2 Freestanding Cases: General Considerations .. 46
 6.3.3 Freestanding Glass Cases: Four-Sided Plus Solid Top .. 46
 6.3.4 Freestanding Glass Cases: Four-Sided Plus Glass Top (Five-Sided) 46
 6.3.5 Grand Cases .. 47
 6.3.6 Mini-cases .. 47
 6.3.7 Table Cases with Flat Tops ... 47
 6.3.8 Table Cases: Lectern Type. .. 47
 6.3.9 Wall Cases .. 47
 6.3.10 Common Elements of Display Cases .. 47
 6.3.11 Case Checklist .. 48
 6.3.12 Case Reflections ... 49
6.4 Dioramas ... 52
 6.4.1 Concealed Lighting Locations 53
 6.4.2 Dual Lighting .. 53

6.5 Typical Lighting Solutions: Summary 53

7.0 Luminaires, Light Sources, and Accessories 53
 7.1 Basic Types of Luminaires Used for Direct Lighting 54
 7.1.1 Lamp-Based Performance Luminaires 54
 7.1.2 Integrated Performance Luminaires 54

7.2 Incumbent Source vs. Replacement or Retrofit Source 55

7.3 Luminaire Construction And Safety 55

7.4 Efficacy, Efficiency, and Life 55

7.5 Flicker .. 56
 7.5.1 Measurement of Flicker ... 57

7.6 Museum Lighting Applications and Techniques: Relationship to Luminaires 57
 7.6.1 Special Effects Lighting ... 57
 7.6.2 Safety and Security with Track Lighting 58
 7.6.3 Picture Lights .. 59

7.7 Luminaires Accessories .. 59
 7.7.1 Glass Spread Lenses and Beam Softeners 59
 7.7.2 Dichroic Glass and Narrow B Filters 59
 7.7.3 UV and IR Filtering ... 60
 7.7.4 Filters, Color Filters, and Thin Film Diffusers 60
 7.7.5 Glare Control .. 60
 7.7.6 Beam Manipulation and Pattern Projection 61

7.8 Track Lighting .. 62
 7.8.1 Codes and Safety Requirements for Track Lighting Systems .. 62
 7.8.2 Track Systems ... 62

7.9 Fiberoptic Systems .. 64

8.0 Daylighting the Museum Environment 65

8.1 Daylight in Architectural Lighting Design 65
 8.1.1 Sunlight ... 65
 8.1.2 Sky Light ... 65
 8.1.3 Reflected Light from Sun or Sky 66

8.2 Energy and Damage .. 66
 8.2.1 Light and Ultraviolet (UV) Energy 66
 8.2.2 Non-Visible Spectrum (IR) .. 67

8.3 Daylighting Design in Museums 67
 8.3.1 Daylight as Object Illuminant 67
 8.3.2 Daylight as Architectural Illuminant 67
 8.3.3 View Provision .. 68
 8.3.4 Visual Comfort .. 68
 8.3.5 Energy Savings .. 68
8.4 Daylighting Techniques and Typologies

- **8.4.1 Sidelighting** .. 68
- **8.4.2 Toplighting** .. 69
- **8.4.3 Combinative Strategies** .. 71
- **8.4.4 Shading Devices** .. 71

8.5 Performance Metrics

- **8.5.1 Object Illuminance and Luminance** 71
- **8.5.2 Values Used to Assess Damage or Risk: Maximum Instantaneous Value** ... 72
- **8.5.3 Values Used to Assess Damage or Risk: Cumulative Value** ... 72
- **8.5.4 Values Used to Assess Damage or Risk: SDF Curves** ... 72
- **8.5.5 Recommended Ratios and Maximum Value** 72
- **8.5.6 Glare** .. 73
- **8.5.7 Damage Concerns** .. 73

8.6 Color Metrics

- **8.6.1 SPD, Chromaticity, and Correlated Color Temperature (CCT)** ... 73
- **8.6.2 Color Rendering Index (CRI)** .. 73

8.7 Documentation and Testing

- **8.7.1 Daylighting Specifications** ... 73
- **8.7.2 Programming and Verification** 77
- **8.7.3 Commissioning** .. 77
- **8.7.4 Operational Issues** ... 77

9.0 Lighting Control Systems

- **9.1 The Lighting Design and Lighting Controls Team** 78
 - **9.1.1 The Lighting Designer** ... 78
 - **9.1.2 Lighting Control Systems Integrators** 78
- **9.2 The Design and Engineering Process** 78
 - **9.2.1 Lighting Control Protocols** .. 78
 - **9.2.2 Developing System Specifications** 79
 - **9.2.3 Submittals** .. 79
- **9.3 Types of Lighting Controls** ... 79
 - **9.3.1 Switches, Wall Box Dimmers, and Contactors** 79
 - **9.3.2 Circuit-Level Automated Controls** 79
 - **9.3.3 Integration of Lighting Controls with Other Systems** 79
- **9.4 Control System Fundamentals and Hardware Elements** 80
 - **9.4.1 Sensors** ... 80
 - **9.4.2 User Interfaces with the Lighting Control System** 80
 - **9.4.3 Control Locations** .. 81
- **9.5 Matching Power Control Equipment with Light Sources** 81
 - **9.5.1 Controlling Incandescent Lamps** 81
 - **9.5.2 Controlling Fluorescent Lamps** 81
 - **9.5.3 Controlling Metal Halide Lamps** 81
 - **9.5.4 Controlling LEDs** .. 81
FOREWORD: MUSEUMS — BY HOWARD BRANDSTON

A museum is the chronicle and exhibition of humans and their world. It has a public trust to allow us access to our heritage. In providing this access to everyone, the design of a good museum should be analogous to the art itself.

Museums are not meant to be vaults in which to store art. Indeed, they are places where art is revealed, not hidden. These revelations allow the visitor to expand upon his or her personal, perceptual, and emotional responses. Such individualized responses refresh the soul, awaken the spirit, and feed the creative impulses so essential to a personalized sense of self-worth.

A museum is not one space. It is an itinerary through a sequence of spaces. It is the responsibility of those who design museums to ensure that such spaces will generate rather than drain energy, that they will help the visitor appreciate the exhibit, linger, learn from it, take refuge in it, enjoy it, return to it—again and again.

A walk through a maze of uniformly lit, monotonous corridors will induce museum fatigue in even the most enthusiastic art lover. As a fine symphony should carefully be conceived and executed, so should the design of a museum be composed with great sensitivity to the physical environment that houses the art. This design should be concerned not only with the preservation of the work exhibited, but with a harmonious blend of space, light, and objects as well. It is with light that art is perceived, and a contrast of lighting qualities, quantities, and focuses can make a space stimulating or fatiguing. Equally important is the diversity of spaces: the shape and size of a room and how it relates to the series of rooms adjoining it can make a visitor hurry through or calmly view the exhibit.

Each visitor should at once feel special and be able to participate in a fulfilling sequence of experiences within the museum. There are no class boundaries in such a space; a museum cuts through the vocational distinctions. The environment should be appropriate and not so overpowering that one feels distracted. The larger and more complex the museum, the clearer should be one’s sense of place within the building. These considerations are not mere afterthoughts; people do not want to stay in places that are not comfortable for them. A museum may house the most exemplary of collections, but if its design does not foster this sense of comfort and a desire to return, it fails in its purpose.

A museum is first and foremost a place for people. A place where human beings can take refuge from the routine of their lives, sit by a Rodin, and allow their thoughts to carry them where they might. A place where young children can be exposed to the heritage of past generations and have the seeds of inspiration planted in them to possibly help determine their roles in the future. A place where artists can study the masters of their craft, and where serious students can formulate avenues of academic discovery.

A museum is a place for discovery. Whether it’s a painting, a dinosaur, a concert, a movie, or a scientific theory doesn’t really matter. The importance of the enrichment of life is the process of discovery, this ability to expand upon what we know and in so doing, what we are. To protect existing art and best facilitate this process of revelation should be the mission of every museum.¹

1.0 INTRODUCTION TO MUSEUM DESIGN

"Light is the most efficient form of information transmission." — Artist Nam Jun Paik

Museums and art galleries collect, preserve, and display natural artifacts and/or examples of human achievement. Effective exhibit lighting should balance exhibition presentation goals (which enrich the visitor experience) with conservation techniques (intended to protect artifacts for appreciation by many generations to come.)

Decisions regarding museum lighting may be influenced by a number of people with varying educational backgrounds and lighting expertise, including:

- The curator, who has a story to tell
- The exhibit designer, whose aesthetic presentation supports that story
- The conservator, whose role is to protect the collection from the ravages of time, heat, humidity, museum visitors, and light

The purpose of this document is to enhance the decision-making process by providing specific standards for satisfying the special requirements of museums and art galleries. Updated information is included on current lighting techniques and new lighting technology since 1996. While this document is intended primarily for lighting designers, other decision makers—such as the museum administrator, curator, conservator, and exhibit designer—can