Recommended Practice for Photobiological Safety for Lamps and Lamp Systems – General Requirements
Recommended Practice for
Photobiological Safety for Lamps and Lamp Systems
- General Requirements

Prepared by
The IESNA Photobiology Committee
Prepared by The IESNA Photobiology Committee

Robert E. Levin, Chair

Rolf Bergman
George Brainard
John Bullough*
Alex Clarke
Richard Collins*
Gilberto Da Costa*
Ronald Daubach*
Paul Forbes
Joseph Greco
David Gross*
Herbert Hoover
Andrew Jackson
R. Landry*
A. Lewis*
Martin Mainster*
Sharon Miller
Steven Mintz
Robert Nigrello*
Michael Phillips*
Richard Sayre
James Sheehy
Milena Simeonova*
Dave Sliney
Ambler Thompson
Richard Vincent
Teresa West
Myron Wolbarsht
Ed Yandek
Seymour Zigman*

*Advisory members
4.2 Ultraviolet Exposure Limits
 4.2.1 General
 4.2.2 200 nm to 400 nm Skin and Eye Exposure Limit
 4.2.3 320 nm to 400 nm Eye Exposure Limit
4.3 Light and Near Infrared Radiation Exposure Limits
 4.3.1 Retinal Thermal Hazard Exposure Limit
 4.3.2 Retinal Blue Light Hazard Exposure Limit
 4.3.3 Retinal Blue Light Hazard Exposure Limit - Small Source
 4.3.4 The Aphakic Eye Hazard Exposure Limit
 4.3.5 Infrared Radiation Hazard Exposure Limit
 4.3.6 Infrared Radiation Hazard Exposure Limit - Weak Visual Stimulus
 4.3.7 Skin - Thermal Hazard Exposure Limit

5.0 Measurements of Lamps and Lamp Systems
5.1 Radiance
5.2 Irradiance or Radiant Exposure Field of View
5.3 Instruments
5.4 Test Conditions

6.0 Specific Requirements
6.1 Labeling
6.2 Technical Information
6.3 Lamp System Requirements
6.4 User Precautions - General

Glossary
Annex A - Summary of Biological Effects
Annex B - Units and Conversions
Annex C - Examples of Warning Labels
Photobiological Safety for Lamps and Lamps Systems - General Requirements

1.0 INTRODUCTION

Lamps were developed and produced in large quantities and became commonplace in an era when industry-wide safety standards were not common. The evaluation and control of lamp hazards is a far more complicated subject than similar tasks for a single-wavelength laser system. The required radiometric measurements are quite involved, for they do not deal with the simple optics of a point source, but rather with an extended source which may or may not be altered by diffusers or projection optics. Also, the wavelength distribution of the lamp may be altered by ancillary optical elements, diffusers, lenses, and the like, as well as variations in operating voltage.

To evaluate a broad-band optical source, such as an arc lamp, an incandescent lamp, a fluorescent lamp, an array of lamps or a lamp system, it first is necessary to determine the spectral distribution of optical radiation emitted from the source at the point or points of nearest human access. This accessible emission spectral distribution of interest for a lighting system may differ from that actually being emitted by the lamp alone due to the filtration by any optical elements (e.g., projection optics) in the light path. Secondly, the size, or projected size, of the source must be characterized in the retinal hazard spectral region. Thirdly, it may be necessary to determine the variation of irradiance and projected radiance (see Glossary) with distance. The performance of the necessary measurements is not an easy task without sophisticated instruments. Users must normally rely upon the expertise of manufacturers for information on lamps and lamp systems. Safety requirements and reference measurement techniques for lamps and specific lamp systems are provided in later standards of this series, viz., RP-27.2, RP-27.3...

Finally, there are well known optical radiation hazards associated with some lamps and lamp systems. The purpose of these standards is to inform the public and original equipment manufacturers (OEMs) about potential radiation hazards that may be associated with various lamps and lamp systems. It is also the purpose of these standards to provide guidance, advice, and standard methods for evaluating and informing the user, both the public and the OEM, about the potential optical radiation hazards that may be associated with these products.