Recommended Practice for Lighting Industrial Facilities
Recommended Practice for Lighting Industrial Facilities

Publication of this Committee Report has been approved by the IESNA. Suggestions for revisions should be directed to the IESNA.

Prepared by:
The IESNA Industrial Lighting Committee

Cover photo courtesy of Keene-Widelite Division of Canlyte
ANSI/IESNA RP-7-01 Recommended Practice on Industrial Lighting

Prepared by the IESNA Industrial Lighting Committee

RP Task Force:
Diarmuid McSweeney, FIES Chair

C. Amick
D. DeGrazio
R. Knott
S. Mishky
D. Paulin
M. Rhodes
G. Schaefer

Industrial Lighting Committee
William Busch, Chair 1994-99
Diarmuid McSweeney, FIES Chair 2000 –

C. Amick, FIES R. Knott*
P. Belding W. Lane*
W. Busch P. Lanphere*
K. Chen* S. Mishky
D. DeGrazio M. Packer*
F. Dickey D. Paulin
D. Duzyk* M. Rhodes
J. Engle* G. Schaefer
J. Fetters* W. Smelser*
D. Finch S. Thomas
J. Fischer R. Topalova
J. Huebner J. Vlah*
G. Irvine* R. Weber*
V. Jones

*Advisory

Special recognition to F. Dickey for his work on the first draft of the revision of this standard and to P. Boyce, FIES and R. Mistrick, FIES for their contributions.

DEDICATION

The IESNA Industrial lighting Committee would like it noted that Charles Amick contributed greatly to the development of this document. The committee, therefore, dedicates this recommended practice to the late Charles Amick.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>1</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LIGHTING THE INDUSTRIAL ENVIRONMENT</td>
<td>1</td>
</tr>
<tr>
<td>2.1 General Design Considerations for Lighting Industrial Areas</td>
<td>1</td>
</tr>
<tr>
<td>2.2 IESNA Lighting Design Guide</td>
<td>2</td>
</tr>
<tr>
<td>3.0 QUALITY OF LIGHTING IN INDUSTRIAL FACILITIES</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Luminance and Luminance Ratios</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Modeling of Objects</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Glare and Visual Discomfort</td>
<td>6</td>
</tr>
<tr>
<td>3.4 Material Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>3.5 Shadows</td>
<td>8</td>
</tr>
<tr>
<td>3.6 Source/Task/Eye Geometry</td>
<td>8</td>
</tr>
<tr>
<td>3.7 Task Visibility-Flicker and Strobe</td>
<td>9</td>
</tr>
<tr>
<td>3.8 Color Rendering (CRI)</td>
<td>10</td>
</tr>
<tr>
<td>3.8.1 Color Rendering Index</td>
<td>10</td>
</tr>
<tr>
<td>3.8.2 Safety Colors</td>
<td>10</td>
</tr>
<tr>
<td>3.9 Daylight Integration and Control</td>
<td>10</td>
</tr>
<tr>
<td>4.0 QUANTITY OF LIGHTING IN INDUSTRIAL FACILITIES</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Illuminance – Horizontal, Vertical and Intermediate Planes</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1 Horizontal Illuminance</td>
<td>11</td>
</tr>
<tr>
<td>4.1.2 Vertical Illuminance</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Initial and Maintained Illuminance</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Lighting System Maintenance</td>
<td>13</td>
</tr>
<tr>
<td>5.0 GENERAL LIGHTING EQUIPMENT</td>
<td>13</td>
</tr>
<tr>
<td>5.1 Fluorescent Systems</td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 Source Characteristics</td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 Fluorescent Luminaire Characteristics/Performance</td>
<td>15</td>
</tr>
<tr>
<td>5.2 High Intensity Discharge Lighting Systems</td>
<td>15</td>
</tr>
<tr>
<td>5.2.1 Metal Halide Lamps</td>
<td>15</td>
</tr>
<tr>
<td>5.2.1.1 Pulse-Start and Ceramic Metal-Halide Lamps</td>
<td>17</td>
</tr>
<tr>
<td>5.2.2 High Pressure Sodium (HPS) Lamps</td>
<td>17</td>
</tr>
<tr>
<td>5.2.3 Luminaire Selection</td>
<td>17</td>
</tr>
<tr>
<td>5.2.3.1 High-Bay Luminaires</td>
<td>18</td>
</tr>
<tr>
<td>5.2.3.2 Low-Bay Luminaires</td>
<td>18</td>
</tr>
<tr>
<td>5.2.3.3 Other Luminaire Types</td>
<td>18</td>
</tr>
<tr>
<td>6.0 BALLAST ISSUES-GENERAL</td>
<td>18</td>
</tr>
<tr>
<td>6.1 Fluorescent Ballast Issues</td>
<td>19</td>
</tr>
<tr>
<td>6.1.1 Ballast Circuitry</td>
<td>19</td>
</tr>
<tr>
<td>6.1.2 Electromagnetic Ballasts</td>
<td>20</td>
</tr>
<tr>
<td>6.1.3 Electronic Ballasts</td>
<td>20</td>
</tr>
<tr>
<td>6.1.4 Instant Start Ballasts</td>
<td>20</td>
</tr>
<tr>
<td>6.1.5 Rapid Start Ballasts</td>
<td>21</td>
</tr>
<tr>
<td>6.1.6 Compact Fluorescent Ballasts</td>
<td>21</td>
</tr>
<tr>
<td>6.1.7 Dimming and Two-Level Switching Ballasts</td>
<td>21</td>
</tr>
<tr>
<td>6.1.8 General Ballast Requirements</td>
<td>21</td>
</tr>
</tbody>
</table>
6.2 High Intensity Discharge (HID) Ballast Issues .. 21
 6.2.1 Ignitor .. 23
 6.2.2 Metal-Halide Ballasts ... 23
 6.2.3 High Pressure Sodium Ballasts ... 23
 6.2.3.1 Magnetic Regulator or Constant-Wattage Autotransformer (CWA) Ballast... 23
 6.2.3.2 Lag or Reactor Ballast .. 23
 6.2.3.3 Lead Circuit Ballast ... 24
 6.2.4 Other HID Ballasts .. 24

7.0 DISTRIBUTION MODES .. 24
 7.1 General Luminaire Characteristics and Performance ... 24
 7.2 Operating Considerations .. 24
 7.2.1 Electrical ... 24
 7.3 Luminaire Classifications ... 24

8.0 BUILDING CONSTRUCTION FEATURES THAT INFLUENCE
 LUMINAIRE SELECTION AND LUMINAIRE PLACEMENT .. 26

9.0 LIGHTING SYSTEM ECONOMIC ANALYSIS .. 27

10.0 SPECIAL CONSIDERATION FACTORS .. 29
 10.1 Lighting and Space Conditioning .. 29
 10.2 Classified Areas .. 29
 10.3 High Humidity or Corrosive Atmospheres ... 30
 10.4 High Ambient Temperatures ... 30
 10.5 Low Ambient Temperatures .. 30
 10.6 Clean Rooms ... 30
 10.7 Food and Drug Processing .. 31

11.0 GENERAL LIGHTING ... 31

12.0 SUPPLEMENTARY TASK LIGHTING ... 31
 12.1 Luminaries for Supplementary Task Lighting ... 32
 12.2 Portable Luminaries .. 32
 12.3 Classification of Visual Tasks and Lighting Techniques 33

13.0 SPECIAL EFFECTS AND TECHNIQUES ... 33
 13.1 Color Contrast .. 33
 13.2 Inspection Techniques .. 33

14.0 EMERGENCY, SAFETY AND SECURITY LIGHTING ... 36
 14.1 Emergency Lighting .. 36
 14.2 Safety Lighting .. 37
 14.3 Security Lighting .. 37

15.0 LIGHTING FOR SPECIFIC TASKS ... 37
 15.1 Molding of Metal and Plastic Parts: Discussion of Lighting and Equipment Choices ... 38
 15.1.1 Foundry Molding (Sand Casting) ... 38
 15.1.2 Molding Parts of Die-Cast Aluminum and Injection Molded Plastic 38
 15.1.3 Inspection of Sand Castings .. 38
 15.1.4 Inspection of Die-Castings and Opaque Injection Molded Plastic Parts 39
 15.2 Parts Manufacturing and Assembly ... 39
 15.3 Machining Metal Parts ... 40
16.0 LIGHTING FOR SPECIFIC VISUAL TASKS ... 40
 16.1 Convex Surfaces ... 40
 16.2 Flat Surfaces .. 40
 16.3 Scribed Marks .. 40
 16.4 Center-Punch Marks ... 41
 16.5 Concave Specular Surfaces ... 41
 16.6 Flat Specular Surfaces .. 41
 16.7 Convex Specular Surfaces .. 41
 16.8 Lighting and Visibility for Specific Sheet Metal Fabrication 42
 16.8.1 Punch Press ... 42
 16.8.2 Shear ... 42
 16.9 Lighting for Large Component Sub- and Final Assembly 42
 16.10 Control Rooms ... 43
 16.11 Warehouse and Storage Area Lighting ... 44
 16.11.1 Types of Warehouse Area and Storage Systems ... 44
 16.11.2 Warehouse Illuminance .. 44
 16.11.3 Warehouse Lighting Design Considerations .. 45

17.0 OUTDOOR AREA LIGHTING .. 46
 17.1 Projected Lighting Systems ... 46
 17.2 Distributed Lighting Systems .. 46
 17.3 Outdoor Tower Platforms, Stairways and Ladders .. 46
 17.4 Special Equipment .. 47
 17.5 Low Illuminance and Visual Acuity Outdoors .. 47

References .. 47

Annex A1
 The Basis for Deviating from Recommended Illuminances ... 48

Annex A2
 Recommended Illuminance Values (target maintained) for Industrial Lighting Design 51

Annex B
 Predictive Methods for Determining Visual Comfort Probability (VCP)
 and Unified Glare Rating (UGR) ... 64

Annex C
 Average Illuminance Calculation: The Lumen Method .. 69
FOREWORD
(This Foreword is not part of the American National Standard and Practice ANSI/IESNA RP-7-01.)

While the objectives of this Recommended Practice are to give a comprehensive treatment of lighting in the industrial environment, there are many spaces in a modern industrial complex that are used for purposes other than manufacturing. These include offices, meeting, conference and reference spaces. It is suggested that the reader refer to the most recent version of these other IESNA Recommended Practices and Design Guides for the appropriate lighting recommendations for spaces not covered in this publication:

ANSI/IESNA RP-1, Recommended Practice on Office Lighting
IESNA RP-5, Recommended Practice of Daylighting
IESNA RP-20, Recommended Practice on Lighting for Parking Facilities
ANSI/NECA/IESNA 502, Recommended Practice for Installing Industrial Lighting Systems
IESNA DG-2, Design Guide for Warehouse Lighting

1.0 INTRODUCTION

A well-designed lighting system can make an important contribution to the success of an industrial facility. Unfortunately, too often the lighting is treated as an afterthought during the planning and construction of these facilities. Great attention is paid to the physical dimensions of the building, to the flow of the process and materials, and to production equipment.

It is common that only horizontal illuminance is considered in providing an environment in which to perform industrial tasks. However, many industrial tasks do not occur in a horizontal plane. There are many features of the lighting system, other than quantity of light, which make a significant contribution to the efficiency of the industrial worker. Placement of the luminaries is critical to providing light of the proper quality, as well as quantity and direction, to allow fast, easy recognition of operations, which may be taking place at high speeds in portions of production machinery where ambient light cannot easily penetrate. Selection of the luminaire distribution can be important to rendering the visual task properly when that task is multi-dimensional rather than flat, and when the task occurs in a plane other than horizontal. The operation of the light sources must be understood to ensure that the proper lamps are selected. Improper light source choice can result in difficult and potentially dangerous conditions caused by long warm-up periods or stroboscopic effects created where rotating parts are present. The ability of the lamps to render colors accurately may have an effect on the recognition of colors or product components and safety colors used to protect the workers from dangerous conditions within the work place. Many industrial operations take place in hostile environments, and the hardware used in these locations must be designed and manufactured to survive these conditions. For these reasons, and many others, great care is required to provide an effective, efficient and readily maintainable lighting system to help modern industrial workers produce at the peak of their ability in a safe environment.

2.0 LIGHTING THE INDUSTRIAL ENVIRONMENT

Providing a successful lighting design for a modern industrial facility is a complex task. In the last three decades of the 20th century, much has been learned about lighting and its positive effects on the well being of people. The goal of providing an efficient, reliable and easily maintainable lighting system, making use of all of the knowledge available to the designer today, is a task that requires experience and considerable planning.

2.1 General Design Considerations for Lighting Industrial Areas

The designer of an industrial lighting system should carefully consider all of the following design criteria since any single issue, or combination of several, could be important in planning a successful industrial lighting installation. (These criteria are not necessarily arranged in order of importance since priorities will vary for different industries or different locations within an industrial complex.)

1. Determine the quality of illumination for the manufacturing processes involved. (See the Industrial Lighting Design Guide in Figure 1 (a) and Section 3.0.)
2. Determine the quantity of illumination for the manufacturing processes involved. (See the Industrial Lighting Design Guide in Figure 1 (a) and (b), Section 4.0 and Annex C.)
3. Determine the lighting required for safety and ensure all three conditions (quality, quantity and safety) are properly weighed and addressed in the final design.
4. Select listed or approved lighting equipment that will provide the requirements of quality and quantity, including photometric characteristics, as well as the mechanical performance required to meet installation and operating conditions.
5. Arrange equipment so that it will be safe, easy and