Approved Method: **Measuring Luminous Flux and Color Maintenance of LED Lamps, Light Engines, and Luminaires**
IES Approved Method for Measuring Luminous Flux and Color Maintenance of LED Lamps, Light Engines, and Luminaires
DISCLAIMER

IES publications are developed through the consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on lighting recommendations. While the IES administers the process and establishes policies and procedures to promote fairness in the development of consensus, it makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

The IES disclaims liability for any injury to persons or property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document.

In issuing and making this document available, the IES is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the IES undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The IES has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the IES list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or statement of compliance with the requirements of this document shall not be attributable to the IES and is solely the responsibility of the certifier or maker of the statement.
IES Testing Procedures Committee

Cameron Miller, Chair

<table>
<thead>
<tr>
<th>Member</th>
<th>Member</th>
<th>Member</th>
<th>Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Andersen</td>
<td>T. Hernandez*</td>
<td>L. Leetzow*</td>
<td>J. Schutz*</td>
</tr>
<tr>
<td>L. Ayers*</td>
<td>R. Horan</td>
<td>K. Lerbs*</td>
<td>A. Smith*</td>
</tr>
<tr>
<td>A. Baker*</td>
<td>J. Hospodarsky</td>
<td>R. Levin*</td>
<td>D. Smith*</td>
</tr>
<tr>
<td>R. Berger</td>
<td>S. Hua*</td>
<td>I. Lewin*</td>
<td>J K. Son*</td>
</tr>
<tr>
<td>R. Bergin*</td>
<td>P-C. Hung*</td>
<td>R. Li*</td>
<td>R. Speck**</td>
</tr>
<tr>
<td>R. Bergman</td>
<td>D. Hussy**</td>
<td>R. Low*</td>
<td>L. Stafford*</td>
</tr>
<tr>
<td>E. Bretschneider</td>
<td>S. Hutton*</td>
<td>J. Marella</td>
<td>G. Steinberg</td>
</tr>
<tr>
<td>D. Brooks*</td>
<td>A. Jackson</td>
<td>P. McCarthy</td>
<td>R. Tuttle</td>
</tr>
<tr>
<td>K. Broughton*</td>
<td>D. Jenkins*</td>
<td>G. Mc Kee</td>
<td>K. Wagner*</td>
</tr>
<tr>
<td>D. Chan*</td>
<td>J. Jiao</td>
<td>C. Miller</td>
<td>J. Walker*</td>
</tr>
<tr>
<td>P-T Chou*</td>
<td>HS. Jung</td>
<td>B. Mosher</td>
<td>H. Waugh*</td>
</tr>
<tr>
<td>R. Collins*</td>
<td>M. Kalkas</td>
<td>W. Newland</td>
<td>J. Welch*</td>
</tr>
<tr>
<td>K. Curry*</td>
<td>D. Karambelas</td>
<td>Y. Ohno*</td>
<td>K. Wilcox*</td>
</tr>
<tr>
<td>R. Daubach*</td>
<td>H. Kashani*</td>
<td>G. Plank*</td>
<td>J. Yon*</td>
</tr>
<tr>
<td>D. Ellis*</td>
<td>R. Kelley*</td>
<td>E. Radkov</td>
<td>J. Zhang</td>
</tr>
<tr>
<td>P. Franck*</td>
<td>M. Kotrebai</td>
<td>D. Randolph</td>
<td></td>
</tr>
<tr>
<td>R. Heinisch*</td>
<td>B. Kuebler</td>
<td>E. Richman*</td>
<td></td>
</tr>
<tr>
<td>K. Hemmi*</td>
<td>J. Lawton*</td>
<td>M. Sapcoe</td>
<td></td>
</tr>
</tbody>
</table>

* Advisory Member
** Honorary Member
8.0 Test Report .. 3

8.1 Administrative Information .. 3
 8.1.1 Testing agency identification. .. 3
 8.1.2 Report issue date .. 3
 8.1.3 Testing start date .. 3
 8.1.4 Testing completion date .. 3
 8.1.5 Description of Test Equipment .. 4
 8.1.6 Individual(s) performing testing. .. 4
 8.1.7 Individual(s) reviewing and approving test results .. 4

8.2 DUT Identification .. 4
 8.2.1 Manufacturer’s name .. 4
 8.2.2 Design (or model) identifier .. 4
 8.2.3 DUT identification, e.g. serial number .. 4
 8.2.4 Description of DUT .. 4
 8.2.5 Non-integrated LED driver or power supply ... 4
 8.2.6 Date of manufacture of the DUT ... 4

8.3 Physical and Ambient Conditions .. 4
 8.3.1 Operating orientation .. 4
 8.3.2 Ambient temperature ... 4
 8.3.3 Humidity ... 4

8.4 Deviations ... 4
 8.4.1 Deviations from test method listed in this document ... 4
 8.4.2 List of non-standard conditions ... 4
 8.4.3 Deviation from nominal or specified operating conditions or testing 4

8.5 Maintenance Test Duration (in Hours) ... 4

8.6 Measurement Intervals (in Hours) .. 4

8.7 Non-operational DUTs ... 4

8.8 Results ... 4
 8.8.1 Luminous flux ... 4
 8.8.2 Luminous flux maintenance ... 4
 8.8.3 Chromaticity coordinates .. 4
 8.8.4 Electrical parameters .. 4

8.9 Other Typical Items ... 4
 8.9.1 Special test conditions ... 4
 8.9.2 Measured L_{50} (hours) and L_{70} (hours) of individual DUTs, when applicable 4
 8.9.3 Statement of uncertainties (if required) .. 4

Annex A Recommendations for Measurement of In-Situ Conditions LED Case Temperature, T_s .. 5

Annex B Rationale for not describing Maintenance Test Duration and Measurement Intervals 6

Annex C Checking and Recording Non-Operational DUTs During Maintenance Test 6

Informative References .. 6
INTRODUCTION

The method for measuring luminous flux and color maintenance of LED light sources has been documented in IES LM-80-08. At the solid-state lighting (SSL) system level such as LED lamps, light engines, and luminaires, other system components, in addition to the LED light sources, also contribute to luminous flux decay and color change over time. The system performance changes over time can be directly tested at the SSL product level. This document addresses the evaluation of the changes in performance of SSL systems over time and can be a useful tool for engineering evaluations and luminous flux maintenance for entire assemblies when environmental considerations and variability for the base LED deprecation is incorporated into the analysis.

Furthermore, performances of SSL systems, LED integrated lamps, non-integrated lamps, LED light engines, and LED luminaires, are typically but not without exception affected by operational and environmental variables such as operating cycle, conditions imposed by auxiliary equipment and fixtures, ambient temperature, airflow and orientation. This test method has been developed to establish consistent and environmental conditions across laboratories to achieve reproducible results and to permit reliable comparison of results.

1.0 Scope

This document provides the method for measurement of luminous flux and color maintenance of LED lamps, integrated; LED lamps, non-integrated; LED light engines, and LED luminaires. The method describes the procedures to be followed and the precautions to be observed in obtaining and reproducing luminous flux and color maintenance measurements under standard operating conditions.

This approved method does not provide guidance or recommendations regarding sampling, predictive estimations or extrapolation of luminous flux maintenance beyond the final measurement.

3.0 DEFINITIONS

3.1 Device Under Test (DUT)

An LED lamp, integrated; LED lamp, non-integrated; LED light engine or LED luminaire that is being tested.

3.2 Luminous Flux Maintenance

Luminous flux maintenance (often referred to as “lumen maintenance”) is the remaining luminous flux over the initial flux (typically expressed as a percentage) at any selected elapsed operating time. Luminous flux maintenance is the complement of luminous flux depreciation (or “lumen depreciation”).

3.3 Maintenance Test

The continuing steady operation test for the DUT when it is energized.

3.4 Non-Operational DUT

A DUT which, when energized, does not emit light.

4.0 PHYSICAL AND ENVIRONMENTAL CONDITIONS DURING OPERATION AND HANDLING

4.1 General

Variation may occur in luminous flux maintenance values of the DUT due to changes in ambient temperature or air movement due to the DUT’s thermal management design. DUTs should be checked and as necessary cleaned prior to measurement and maintenance test. Manufacturers handling instructions (e.g., electro-static discharge or ESD, etc.) shall be observed. Unusual environmental conditions, such as thermal interference from HVAC systems or solar loading, are to be reduced to levels reasonably expected to minimize influence relative to operation when the conditions are removed.

4.2 Mounting DUTs

The DUT shall be mounted in accordance with the manufacturer recommendations.

4.3 Vibration

DUTs should not be subjected to excessive vibration or shock during operation or handling.