Contamination Control Division
Standard 1246D

IEST-STD-CC1246D

Product Cleanliness Levels and Contamination Control Program

Copies of ISO Standards 14644-1 Part 1, and 14644-2 Part 2, may be obtained from the Institute of Environmental Sciences and Technology (IEST), 5005 Newport Drive, Suite 506, Rolling Meadows, IL 60008-3841. Phone: 1-847-255-1561, Fax: 1-847-255-1699, Website: www.iest.org, E-mail: publicationsales@iest.org.

This Recommended Practice is published by the INSTITUTE OF ENVIRONMENTAL SCIENCES AND TECHNOLOGY to advance contamination control and the technical and engineering sciences. Its use is entirely voluntary, and determination of its applicability and suitability for any particular use is solely the responsibility of the user.

This Recommended Practice was prepared by and is under the jurisdiction of Working Group CC901 of the IEST Contamination Control Division.

Copyright© 2002 by the INSTITUTE OF ENVIRONMENTAL SCIENCES AND TECHNOLOGY

Third printing, December 2002

ISBN 978-1-877862-82-3

PROPOSAL FOR IMPROVEMENT: The Working Groups of the INSTITUTE OF ENVIRONMENTAL SCIENCES AND TECHNOLOGY are continually working on improvements to their Recommended Practices and Reference Documents. Suggestions from those who use these documents are welcome. If you have a suggestion regarding this document, please use the online Proposal for Improvement form found on the IEST website at www.iest.org/proposal/form.html.
Product Cleanliness Levels and Contamination Control Program

IEST-STD-CC1246D

CONTENTS

HISTORY.. 5

SECTION

1 SCOPE AND LIMITATIONS .. 7
2 REFERENCES AND APPLICABLE DOCUMENTS.. 7
3 TERMS AND DEFINITIONS .. 8
4 BACKGROUND AND PURPOSE ... 9
5 CLEANLINESS REQUIREMENTS .. 9
6 MEASUREMENT OF CLEANLINESS ... 11
7 STATISTICAL ANALYSIS AND REPORTING DATA .. 12
8 CONTAMINATION CONTROL PROGRAM .. 13
9 PROTECTION .. 13
10 INSPECTION .. 13
11 BIBLIOGRAPHY ... 13
12 ADDITIONAL RESOURCES ... 14

TABLE

1 PARTICULATE CLEANLINESS LEVELS .. 15
2 CALCULATING PARTICLE PERCENT AREA COVERAGE ... 16
3 NONVOLATILE RESIDUE CLEANLINESS LEVELS ... 17
4 SAMPLING AND MEASUREMENT OF TECHNIQUES FOR SURFACES, LIQUIDS, AND GASES ... 17
5 STUDENT’S T FACTOR FOR 95% CONFIDENCE LIMIT ... 18

FIGURE

1 PRODUCT CLEANLINESS LEVELS ... 18
2 FORMAT FOR SPECIFYING PRODUCT CLEANLINESS LEVELS ... 19
HISTORY

The establishment of contamination control practices became a necessity with the advent of World War II and the ensuing mechanical wartime innovations. Two of the wartime inventions requiring high levels of cleanliness were the Norden bombsight and the first navigational gyroscopes. Particles in the range of 20 µm to 50 µm would cause the bombsight and the gyroscope to malfunction. Further degrees of refinement in equipment created the need for greater control of product cleanliness and ambient conditions. In 1956, the government acquired an inertial guidance system containing two floating gyros. The suspension system was highly dependent on contaminant-free fluid. It was observed that contamination one-half the size of cigarette smoke particles could compromise the system, indicating the degree of cleanliness control necessary in the development of that system.

Major improvements in the area of industrial contamination control and air filtration occurred during the late 1950s and early 1960s. The development of improved techniques occurred as a result of manufacturing advances and the introduction of extremely sophisticated electronic, electromechanical, electro-optical, and hydraulic equipment. These devices required major improvements in cleanliness levels, because the presence of microscopic particles could result in the malfunction of a device, an entire system, or even the mission.

With the technological advancements that have followed, requirements for higher degrees of cleanliness have forced contamination control efforts to keep pace through new developments and applications. The greatest impetus for stricter requirements for contamination control has come from the microelectronics industry. The advent of solid-state electronics and integrated circuits made it possible to produce “chips” containing hundreds of thousands of discrete devices, each consisting of multiple component parts with specific functions, totaling perhaps millions of such components per chip. Without the innovations in contamination control, the advances in low-cost computers, communications, and a myriad of other uses of microelectronics would not have been possible.

The development of cleanliness standards for critical components was the direct result of satisfying the need for common terminology and standardization. In 1962, a military standard was created to establish guidelines and requirements for the specification of cleanliness levels essential to product reliability and quality. This document, known as MIL-STD-1246, has been updated periodically in order to keep current with technological advances. Its history is summarized below:

- MIL-STD-1246 (MI) 19 DECEMBER 1962
- MIL-STD-1246A 18 AUGUST 1967
- MIL-STD-1246B 4 SEPTEMBER 1987
- MIL-STD-1246C 11 APRIL 1994

The 1246C version was prepared for the U.S. Army Missile Command by the Contamination Control Division of the Institute of Environmental Sciences and Technology.

In 1997, the U.S. Army commissioned the Institute of Environmental Sciences and Technology to revise and adapt this military standard as an industry standard, since its usefulness today extends far beyond military applications. This document is the resulting industry standard.
1 SCOPE AND LIMITATIONS

1.1 Scope
This standard provides a basis and a uniform method for specifying product cleanliness levels and contamination control program requirements. The emphasis is on contaminants that can impact product performance.

1.2 Use
These requirements are not required for all products but are intended for use in procurement and design contracts for those items where contamination control limits for parts, components, or fluids are necessary to ensure reliability and performance.

1.3 Safety
This standard does not purport to address the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2 REFERENCES AND APPLICABLE DOCUMENTS

Unless otherwise specified, the latest revision shall apply. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless specific exemption has been obtained.

2.1 International Organization for Standardization (ISO)
(Available from IEST and other sources)

2.2 American Society for Testing and Materials (ASTM)
E1216: Standard Practice for Sampling for Surface Particulate Contamination by Tape Lift
E1234: Standard Practice for Handling, Transporting, and Installing Nonvolatile Residue (NVR) Sample Plates Used in Environmentally Controlled Areas for Spacecraft
E1235: Standard Test Method for Gravimetric Determination of Nonvolatile Residue (NVR) in Environmentally Controlled Areas for Spacecraft
E1548: Standard Practice for Preparation of Aerospace Contamination Control Plans
F25: Standard Test Method for Sizing and Counting Airborne Particulate Contamination in Clean Rooms and Other Dust-Controlled Areas Designed for Electronic and Similar Applications
F50: Standard Practice for Continuous Sizing and Counting of Airborne Particles in Dust-Controlled Areas and Clean Rooms Using Instruments Capable of Detecting Single Sub-Micrometre and Larger Particles