IPC-2152

Standard for Determining Current Carrying Capacity in Printed Board Design

Developed by the Current Carrying Capacity Task Group (1-10b) of the Printed Board Design Committee (1-10) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 **SCOPE** ... 1
 1.1 Purpose ... 1
 1.2 Presentation 1
 1.3 Interpretation 1
 1.4 Definition of Terms 1
 1.4.1 Ambient .. 1
 1.4.2 Base Material 1
 1.4.3 Circuitry Layer 1
 1.4.4 Conductive Pattern 1
 1.4.5 Conductor Spacing 1
 1.4.6 Conductor Thickness 1
 1.4.7 Conductor Width 1
 1.4.8 Convection 1
 1.4.9 Copper Weight 1
 1.4.10 Current-Carrying Capacity 1
 1.4.11 Heat Sink Plane 2
 1.4.12 Thermal Conductivity 2
 1.4.13 Thermal Resistance 2

2 **APPLICABLE DOCUMENTS** 2
 2.1 IPC .. 2

3 **CONDUCTOR SIZING INTRODUCTION** 2

4 **CONDUCTOR SIZING DESIGN GUIDELINES** 2

5 **CONDUCTOR SIZING CHARTS** 3
 5.1 Conductor Sizing Charts for Still Air Environments ... 6
 5.1.1 Still Air Environment Charts in Imperial (Inch) Units ... 6
 5.1.2 Still Air Environment Charts in SI (Metric) Units 9
 5.2 Conductor Sizing Charts for Vacuum/Space Environments ... 12
 5.2.1 Vacuum/Space Environment Charts in Imperial (Inch) Units ... 12
 5.2.2 Vacuum/Space Environment Charts in SI (Metric) Units 15

APPENDIX A ... 18
 A.1 INTRODUCTION 18
 A.2 DERATING .. 18
 A.3 SELECTING A CHART 18
 A.3.1 Conductor Temperature Rise 20
 A.3.2 How to Use the Charts 20
 A.3.2.1 Chart Basics: Known Current 20
 A.3.3 Parallel Conductors 20
 A.3.4 Vias .. 20
 A.3.4.1 Conductor to Via to Plane 20
 A.3.4.2 Microvia 20

A.4 **SUPPLEMENTAL MATERIAL** 27
 A.4.1 Flex Circuits 27
 A.4.2 PB Thickness 28
 A.4.3 Copper Weight 29
 A.4.4 Board Material 29
 A.4.5 Environments 29
 A.4.6 Copper Planes 29
 A.4.6.1 Single Plane 29
 A.4.6.2 Conductor Distance from Plane 30

A.5 **ADDITIONAL TOPICS** 31
 A.5.1 Heat Transfer from a Conductor 31
 A.5.2 Conductor Power Dissipation 31
 A.5.2.1 Conductor Electrical Resistance 31
 A.5.2.2 Voltage Sources 32
 A.5.2.3 Current Source (or Sink) 32
 A.5.3 Odd Shaped Geometries and Swiss-Cheese Effect . 32
 A.5.3.1 Voltage Drop Analysis 32
 A.5.3.2 Voltage Sources 33
 A.5.3.3 Current Source (or Sink) 33
 A.5.3.4 Electrical Conductivity 33
 A.5.4 HDI .. 33
 A.5.5 High-Speed 33

A.6 **CONDUCTOR SIZING CHARTS** 33
 A.6.1 Conductor Sizing Charts for Still Air Environments ... 33
 A.6.1.1 Still Air Environment Charts in Imperial (Inch) Units ... 34
 A.6.1.2 Still Air Environment Charts in SI (Metric) Units 50
 A.6.2 Conductor Sizing Charts for Vacuum/Space Environments 68
 A.6.2.1 Vacuum/Space Environment Charts in Imperial (Inch) Units ... 68
 A.6.2.2 Vacuum/Space Environment Charts in SI (Metric) Units 76

A.7 **REFERENCES** ... 85
 A.7.1 The Origin of the First Conductor Sizing Chart 85
Figures

Figure A-1 Two 2.03 mm [0.080 in] Conductors
(25.4 mm [1.0 in] spacing) No amperage adjustment 25

Figure A-2 Two 0.080 in conductors
(2.54 mm [0.100 in] spacing) Amperage adjusted for parallel conductor 24

Figure A-3 Two 0.080 in conductors
(2.54 mm [0.100 in] spacing) No amperage adjustment 24

Figure A-4 Two 0.080 in conductors
(12.7 mm [0.500 in] spacing) Amperage adjusted for Parallel Conductor 25

Figure A-5 Two 0.080 in conductors
(25.4 mm [1.0 in] spacing) Amperage adjusted for Parallel Conductor 25

Figure A-6 Two 2.03 mm [0.080 in] conductors
(2.54 mm [0.100 in] spacing) No amperage adjustment 24

Figure A-7 Two 2.03 mm [0.080 in] Conductors
(2.54 mm [0.100 in] spacing) No amperage adjustment 24

Figure A-8 Two 2.03 mm [0.080 in] Conductors
(12.7 mm [0.500 in] spacing) Amperage adjusted for Parallel Conductor 25

Figure A-9 Two 2.03 mm [0.080 in] Conductors
(25.4 mm [1.0 in] spacing) Amperage adjusted for Parallel Conductor 25

Figure A-10 Two 2.03 mm [0.080 in] Conductors
(25.4 mm [1.0 in] spacing) No amperage adjustment 26

Figure A-11 Via Cross-sectional Area .. 27

Figure A-12 Via Temperature Gradient .. 27

Figure A-13 Distance from Conductor to Copper Plane 30

Figure A-14 Single Conductor in a PB .. 31

Figure A-15 3 oz. External Conductors (Still Air) Log
(5 - 700 Sq-mils) .. 34

Figure A-16 3 oz. External Conductors (Still Air)
(5 - 700 Sq-mils) .. 35

Figure A-17 3 oz. External Conductors (Still Air)
(5 - 100 Sq-mils) .. 35

Figure A-18 3 oz. External Conductors (Still Air)
(5 - 50 Sq-mils) .. 36

Figure A-19 3 oz. Internal Conductors (Still Air) Log
(5 - 700 Sq-mils) .. 37

Figure A-20 3 oz. Internal Conductors (Still Air)
(5 - 700 Sq-mils) .. 38

Figure A-21 3 oz. Internal Conductors (Still Air)
(5 - 100 Sq-mils) .. 38

Figure A-22 3 oz. Internal Conductors (Still Air)
(5 - 50 Sq-mils) .. 39

Figure A-23 2 oz. External Conductors (Still Air) Log
(5 - 700 Sq-mils) .. 40

Figure A-24 2 oz. External Conductors (Still Air)
(5 - 700 Sq-mils) .. 41

Figure A-25 2 oz. External Conductors (Still Air)
(5 - 100 Sq-mils) .. 41

Figure A-26 2 oz. External Conductors (Still Air)
(5 - 50 Sq-mils) .. 42

Figure A-27 2 oz. Internal Conductors (Still Air) Log
(5 - 700 Sq-mils) .. 43

Figure A-28 2 oz. Internal Conductors (Still Air)
(5 - 700 Sq-mils) .. 44

Figure A-29 2 oz. Internal Conductors (Still Air)
(5 - 100 Sq-mils) .. 44

Figure A-30 2 oz. Internal Conductors (Still Air)
(5 - 50 Sq-mils) .. 45

Figure A-31 1 oz. Internal Conductors (Still Air) Log
(5 - 700 Sq-mils) .. 46

Figure A-32 1 oz. Internal Conductors (Still Air)
(5 - 700 Sq-mils) .. 46

Figure A-33 1 oz. Internal Conductors (Still Air)
(5 - 100 Sq-mils) .. 47

Figure A-34 1 oz. Internal Conductors (Still Air)
(5 - 50 Sq-mils) .. 47

Figure A-35 1/2 oz. Internal Conductors (Still Air)
Log (5 - 700 Sq-mils) 48

Figure A-36 1/2 oz. Internal Conductors (Still Air)
(5 - 700 Sq-mils) .. 48

Figure A-37 1/2 oz. Internal Conductors (Still Air)
(5 - 100 Sq-mils) .. 49

Figure A-38 1/2 oz. Internal Conductors (Still Air)
(5 - 50 Sq-mils) .. 49

Figure A-39 3 oz. External Conductors (Still Air) Log
(0.001 - 0.5 Sq-mm) 50
This is a preview of "IPC 2152-2009". Click here to purchase the full version from the ANSI store.
Standard for Determining Current Carrying Capacity in Printed Board Design

1 SCOPE

This document is intended as a general guide to understanding the relationship between current, conductor size, and temperature, and can be used more specifically in the design and evaluation of copper conductors in printed boards (PBs).

1.1 Purpose The purpose of this document is to provide guidance on determining the appropriate conductor sizes on the finished PB as a function of the current carrying capacity required and the acceptable conductor temperature rise.

1.2 Presentation All dimensions and tolerances in this standard are expressed in hard SI (metric) units and parenthetical soft imperial (inch) units. Users of this standard are expected to use metric dimensions.

1.3 Interpretation “Shall,” the imperative form of the verb, is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data is supplied to justify the exception.

The words “should” and “may” are used whenever it is necessary to express non-mandatory provisions.

“Will” is used to express a declaration of purpose.

To assist the reader, the word “shall” is presented in bold characters.

1.4 Definition of Terms The definition of all terms used herein shall be in accordance with IPC-T-50 and as defined in 1.4.1 through 1.4.13.

1.4.1 Ambient The surrounding environment coming into contact with the system or component in question.

1.4.2 Base Material The insulating material upon which a conductive pattern may be formed (The base material may be rigid or flexible or both. It may be a dielectric or insulated metal sheet).

1.4.3 Circuitry Layer A layer of PB containing conductors, including ground and voltage planes.

1.4.4 Conductive Pattern The configuration or design of the conductive material on a base material. (This includes conductors, lands, vias, planes, and passive components when these are an integral part of the PB manufacturing process.)

1.4.5 Conductor Spacing The observable distance between adjacent edges (not center-to-center spacing) of isolated conductive patterns in a conductor layer.

1.4.6 Conductor Thickness Thickness of a conductor including additional metallic coatings but excluding non-conductive coatings.

1.4.7 Conductor Width The observable width of a conductor at any point chosen at random on a PB as viewed from directly above unless otherwise specified.

1.4.8 Convection Heat transfer that occurs at the interface of a solid and a fluid or gas that is due to their differences in temperature.

1.4.9 Copper Weight The mass of copper per unit area for a foil, typically expressed in ounces per square foot or grams per square centimeter (these units are not equivalent).

1.4.10 Current-Carrying Capacity The maximum electrical current that can be carried continuously by a conductor, without causing an objectionable degradation of electrical or mechanical properties of the product.