IPC-6012D

Qualification and Performance Specification for Rigid Printed Boards

Developed by the Rigid Printed Board Performance Specifications Task Group (D-33a) of the Rigid Printed Board Committee (D-30) of IPC

Supersedes:
IPC-6012C - April 2010
IPC-6012B with Amendment 1 - July 2007
IPC-6012B - August 2004
IPC-6012A with Amendment 1 - July 2000
IPC-6012A - October 1999
IPC-6012 - July 1996
IPC-RB-276 - March 1992

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 105N
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Statement of Scope .. 1
 1.2 Purpose .. 1
 1.2.1 Supporting Documentation 1
 1.3 Performance Classification and Type 1
 1.3.1 Classification ... 1
 1.3.2 Printed Board Type 1
 1.3.3 Selection for Procurement 1
 1.3.4 Material, Plating Process and Final Finish 3
 1.4 Terms and Definitions 4
 1.4.1 High Density Interconnects (HDI) 4
 1.4.2 Microvia .. 4
 1.5 Interpretation .. 4
 1.6 Presentation .. 4
 1.7 Revision Level Changes 4

2 APPLICABLE DOCUMENTS 5
 2.1 IPC .. 5
 2.2 Joint Industry Standards 6
 2.3 Federal .. 7
 2.4 Other Publications ... 7
 2.4.1 American Society for Testing and Materials 7
 2.4.2 Underwriters Lab .. 7
 2.4.3 National Electrical Manufacturers Association 7
 2.4.4 American Society for Quality 7
 2.4.5 AMS ... 7
 2.4.6 American Society of Mechanical Engineers 7

3 REQUIREMENTS .. 8
 3.1 General .. 8
 3.2 Materials ... 8
 3.2.1 Laminates and Bonding Material 8
 3.2.2 External Bonding Materials 8
 3.2.3 Other Dielectric Materials 8
 3.2.4 Metal Foils ... 8
 3.2.5 Metal Planes/Cores 8
 3.2.6 Base Metallic Plating Depositions and Conductive Coatings 8
 3.2.7 Final Finish Depositions and Coatings – Metallic and Non-Metallic 9
 3.2.8 Polymer Coating (Solder Mask) 10
 3.2.9 Fusing Fluids and Fluxes 10
 3.2.10 Marking Inks ... 10
 3.2.11 Hole Fill Insulation Material 12
 3.2.12 Heatsink Planes, External 12
 3.2.13 Via Protection .. 12
 3.2.14 Embedded Passive Materials 12
 3.3 Visual Examination 12
 3.3.1 Edges .. 13
 3.3.2 Laminate Imperfections 13
 3.3.3 Plating and Coating Voids in the Hole 14
 3.3.4 Lifted Lands ... 14
 3.3.5 Marking ... 14
 3.3.6 Solderability .. 15
 3.3.7 Plating Adhesion 15
 3.3.8 Edge Printed Board Contact, Junction of Gold Plate to Solder Finish 15
 3.3.9 Workmanship .. 15
 3.4 Printed Board Dimensional Requirements 15
 3.4.1 Hole Size, Hole Pattern Accuracy and Pattern Feature Accuracy 16
 3.4.2 Annular Ring and Breakout (External) 16
 3.4.3 Bow and Twist ... 18
 3.4.4 Conductor Definition 18
 3.4.5 Conductor Imperfections 18
 3.4.6 Conductive Surfaces 19
 3.5 Structural Integrity 21
 3.5.1 Conductor Width and Thickness 18
 3.5.2 Conductor Spacing 18
 3.5.3 Conductor Imperfections 18
 3.5.4 Conductive Surfaces 19
 3.6 Thermal Stress Testing 21
 3.6.1 Requirements for Microsectioned Coupons or Printed Boards 22
 3.7 Solder Mask Requirements 34
 3.7.1 Solder Mask Coverage 34
 3.7.2 Solder Mask Cure and Adhesion 35
 3.7.3 Solder Mask Thickness 35
 3.8 Electrical Requirements 35
 3.8.1 Dielectric Withstanding Voltage 35
 3.8.2 Electrical Continuity and Isolation Resistance 35
 3.8.3 Circuit/PTH Shorts to Metal Substrate 35
 3.8.4 Moisture and Insulation Resistance (MIR) 35
 3.9 Cleanliness .. 36
 3.9.1 Cleanliness Prior to Solder Mask Application 36
 3.9.2 Cleanliness After Solder Mask, Solder, or Alternative Surface Coating Application 36
 3.9.3 Cleanliness of Inner Layers After Oxide Treatment Prior to Lamination 36
3.10 Special Requirements .. 36
 3.10.1 Outgassing .. 36
 3.10.2 Fungus Resistance 36
 3.10.3 Vibration .. 36
 3.10.4 Mechanical Shock 36
 3.10.5 Impedance Testing 37
 3.10.6 Coefficient of Thermal Expansion (CTE) 37
 3.10.7 Thermal Shock .. 37
 3.10.8 Surface Insulation Resistance (As Received) 37
 3.10.9 Metal Core (Horizontal Microsection) 37
 3.10.10 Rework Simulation 37
 3.10.11 Bond Strength, Unsupported Component Hole Land 37
 3.10.12 Destructive Physical Analysis 37
 3.10.13 Peel Strength Requirements (For Foil Laminated Construction Only) 37
 3.11 Repair ... 38
 3.11.1 Circuit Repairs ... 38
 3.11.2 Rework ... 38
 4 QUALITY ASSURANCE PROVISIONS 38
 4.1 General .. 38
 4.1.1 Qualification .. 38
 4.1.2 Sample Test Coupons 38
 4.2 Acceptance Tests .. 38
 4.2.1 C=0 Zero Acceptance Number Sampling Plan 38
 4.2.2 Referee Tests ... 39
 4.3 Quality Conformance Testing 39
 4.3.1 Coupon Selection .. 39
 5 NOTES .. 44
 5.1 Ordering Data .. 44
 5.2 Superseded Specifications 44
APPENDIX A ... 45

Figures
 Figure 1-1 Microvia Definition 4
 Figure 3-1 Annular Ring Measurement (External) 17
 Figure 3-2 Breakout of 90° and 180° 18
 Figure 3-3 External Conductor Width Reduction 18
 Figure 3-4 Example of Intermediate Target Land in a Microvia 18
 Figure 3-5 Rectangular Surface Mount Lands 19
 Figure 3-6 Round Surface Mount Lands 19
 Figure 3-7 Printed Board Edge Connector Lands 20
 Figure 3-8 Plated Hole Microsection (Grinding/Polishing) Tolerance ... 22
 Figure 3-9 An Example of Plating to Target Land Separation ... 22
 Figure 3-10 Crack Definition 24
 Figure 3-11 Separations at External Foil 24
 Figure 3-12 Plating Folds/Inclusions – Minimum Measurement Points .. 24
 Figure 3-13 Microsection Evaluation Laminate Attributes ... 25
 Figure 3-14 Measurement for Etchback 25
 Figure 3-15 Measurement for Dielectric Removal 26
 Figure 3-16 Measurement for Negative Etchback 26
 Figure 3-17 Annular Ring Measurement (Internal) 27
 Figure 3-18 Microsection Rotations for Breakout Detection ... 27
 Figure 3-19 Comparison of Microsection Rotations 27
 Figure 3-20 Example of Non-Conforming Dielectric Spacing Reduction Due to Breakout at Microvia Target Land . . . 28
 Figure 3-21 Surface Copper Wrap Measurement for Filled Holes ... 28
 Figure 3-22 Surface Copper Wrap Measurement for Non-Filled Holes ... 28
 Figure 3-23 Wrap Copper in Type 4 Printed Board (Acceptable) ... 29
 Figure 3-24 Wrap Copper Removed by Excessive Sanding/Planarization/Etching (Not Acceptable) 29
 Figure 3-25 Copper Cap Thickness 30
 Figure 3-26 Copper Cap Filled Via Height (Bump) 30
 Figure 3-27 Copper Cap Depression (Dimple) 30
 Figure 3-28 Copper Cap Plating Dimension 30
 Figure 3-29 Example of Acceptable Voiding in a Cap Plated, Copper Filled Microvia 31
 Figure 3-30 Example of Acceptable Voiding in a Copper Filled Microvia without Cap Plating 31
 Figure 3-31 Example of Non-conforming Void in a Cap Plated, Copper Filled Microvia 31
 Figure 3-32 Example of Non-conforming Void in a Copper Filled Microvia .. 31
 Figure 3-33 Microvia Contact Dimension 31
 Figure 3-34 Exclusion of Separations in Microvia Target Land Contact Dimension 32
 Figure 3-35 Penetration of Microvia Target Land 32
 Figure 3-36 Metal Core to PTH Spacing 33
 Figure 3-37 Measurement of Minimum Dielectric Spacing ... 33
 Figure 3-38 Fill Material in Blind/Through Vias When Cap Plating Not Specified 34
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Technology Adders</td>
</tr>
<tr>
<td>1-2</td>
<td>Default Requirements</td>
</tr>
<tr>
<td>3-1</td>
<td>Metal Planes/Cores</td>
</tr>
<tr>
<td>3-2</td>
<td>Maximum Limits of SnPb Solder Bath Contaminant</td>
</tr>
<tr>
<td>3-3</td>
<td>Final Finish and Coating Requirements</td>
</tr>
<tr>
<td>3-4</td>
<td>Surface and Hole Copper Plating Minimum Requirements for Buried Vias > 2 Layers, Through-Holes, and Blind Vias</td>
</tr>
<tr>
<td>3-5</td>
<td>Surface and Hole Copper Plating Minimum Requirements for Microvias (Blind and Buried)</td>
</tr>
<tr>
<td>3-6</td>
<td>Surface and Hole Copper Plating Minimum Requirements for Buried Cores (2 layers)</td>
</tr>
<tr>
<td>3-7</td>
<td>Plating and Coating Voids in the Hole</td>
</tr>
<tr>
<td>3-8</td>
<td>Edge Printed Board Contact Gap</td>
</tr>
<tr>
<td>3-9</td>
<td>Minimum Annular Ring</td>
</tr>
<tr>
<td>3-10</td>
<td>Plated Hole Integrity After Stress</td>
</tr>
<tr>
<td>3-11</td>
<td>Cap Plating Requirements for Filled Holes</td>
</tr>
<tr>
<td>3-12</td>
<td>Microvia Contact Dimension</td>
</tr>
<tr>
<td>3-13</td>
<td>Internal Layer Foil Thickness after Processing</td>
</tr>
<tr>
<td>3-14</td>
<td>External Conductor Thickness after Plating</td>
</tr>
<tr>
<td>3-15</td>
<td>Solder Mask Adhesion</td>
</tr>
<tr>
<td>3-16</td>
<td>Dielectric Withstanding Voltages</td>
</tr>
<tr>
<td>3-17</td>
<td>Insulation Resistance</td>
</tr>
<tr>
<td>4-1</td>
<td>Qualification Test Coupons</td>
</tr>
<tr>
<td>4-2</td>
<td>C=0 Sampling Plan per Lot Size</td>
</tr>
<tr>
<td>4-3</td>
<td>Acceptance Testing and Frequency</td>
</tr>
<tr>
<td>4-4</td>
<td>Quality Conformance Testing</td>
</tr>
</tbody>
</table>
Qualification and Performance
Specification for Rigid Printed Boards

1 SCOPE

1.1 Statement of Scope This specification establishes and defines the qualification and performance requirements for the fabrication of rigid printed boards.

1.2 Purpose The purpose of this specification is to provide requirements for qualification and performance of rigid printed boards based on the following constructions and/or technologies. These requirements apply to the finished product unless otherwise specified:

- Single-sided, double-sided printed boards with or without plated-through holes (PTHs).
- Multilayer printed boards with PTHs with or without buried/blind vias/microvias.
- Active/passive embedded circuitry printed boards with distributive capacitive planes and/or capacitive or resistive components.
- Metal core printed boards with or without an external metal heat frame, which may be active or non-active.

1.2.1 Supporting Documentation IPC-A-600, which contains figures, illustrations and photographs that can aid in the visualization of externally and internally observable acceptable/nonconforming conditions, may be used in conjunction with this specification for a more complete understanding of the recommendations and requirements.

1.3 Performance Classification and Type

1.3.1 Classification This specification establishes acceptance criteria for the performance classification of rigid printed boards based on customer and/or end-use requirements. Printed boards are classified by one of three general Performance Classes as defined in IPC-6011.

1.3.1.1 Requirement Deviations Requirements deviating from these heritage classifications shall be as agreed between user and supplier (AABUS).

1.3.1.2 Space Requirement Deviations Space performance classification deviations are provided in the IPC-6012DS Addendum and are applicable when the addendum is specified within the procurement documentation.

1.3.2 Printed Board Type Printed boards without PTHs (Type 1) and with PTHs (Types 2-6) are classified as follows and may include technology adders as described in Table 1-1:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Single-Sided Printed Board</td>
</tr>
<tr>
<td>Type 2</td>
<td>Double-Sided Printed Board</td>
</tr>
<tr>
<td>Type 3</td>
<td>Multilayer Printed Board without blind or buried vias</td>
</tr>
<tr>
<td>Type 4</td>
<td>Multilayer Printed Board with blind and/or buried vias (may include microvias)</td>
</tr>
<tr>
<td>Type 5</td>
<td>Multilayer metal core Printed Board without blind or buried vias</td>
</tr>
<tr>
<td>Type 6</td>
<td>Multilayer metal core Printed Board with blind and/or buried vias (may include microvias)</td>
</tr>
</tbody>
</table>

1.3.3 Selection for Procurement Performance class shall be specified in the procurement documentation.

The procurement documentation shall provide sufficient information to fabricate the printed board and ensure that the user receives the desired product. Information that should be included in the procurement documentation is to be in accordance with IPC-2611 and IPC-2614.

The procurement documentation shall specify the thermal stress test method to be used to meet the requirement of 3.6.1. Selection shall be from those depicted in 3.6.1.1, 3.6.1.2 and 3.6.1.3. If not specified (see 5.1), the default shall be per Table 1-2.