Requirements for Soldered Electrical and Electronic Assemblies

Developed by the J-STD-001 Task Group (5-22A), J-STD-001 Task Group – Europe (5-22A-EU), J-STD-001 Task Group – China (5-22ACN) of the Assembly and Joining Committees (5-20) of IPC

Supersedes:
J-STD-001G - October 2017
J-STD-001F WAM1 - February 2016
J-STD-001F - July 2014
J-STD-001E - April 2010
J-STD-001D - February 2005
J-STD-001C - March 2000
J-STD-001B - October 1996
J-STD-001A - April 1992

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
Table of Contents

1.0 GENERAL .. 1
 1.1 Scope... 1
 1.2 Purpose... 1
 1.3 Classification.. 1
 1.4 Measurement Units and Applications 1
 1.4.1 Verification of Dimensions 2
 1.5 Definition of Requirements 2
 1.5.1 Hardware Defects and Process Indicators 2
 1.5.2 Material and Process Nonconformance 2
 1.5.3 Procedures for Specialized Technologies 2
 1.6 Process Control Requirements 3
 1.6.1 Opportunities Determination 3
 1.6.2 Statistical Process Control 3
 1.7 Order of Precedence ... 4
 1.7.1 Appendices .. 4
 1.8 Terms and Definitions 4
 1.8.1 Circumferential Solder Separation (Area Void of Solder) 4
 1.8.2 Diameter ... 4
 1.8.3 Disposition .. 4
 1.8.4 Electrical Clearance .. 4
 1.8.5 Engineering Documentation 4
 1.8.6 FOD (Foreign Object Debris) 4
 1.8.7 High Voltage .. 4
 1.8.8 Manufacturer ... 5
 1.8.9 Objective Evidence .. 5
 1.8.10 Process Control .. 5
 1.8.11 Proficiency ... 5
 1.8.12 Solder Destination Side 5
 1.8.13 Solder Source Side .. 5
 1.8.14 Solder Void .. 5
 1.8.15 Supplier .. 5
 1.8.16 Tempered Leads .. 5
 1.8.17 User .. 5
 1.8.18 Wire Overlap ... 5
 1.8.19 Wire Overwrap .. 5
 1.9 Requirements Flowdown .. 6
 1.10 Personnel Proficiency ... 6
 1.10.1 X-Ray Specific Personnel Proficiency 6
 1.11 Acceptance Requirements 6
 1.12 Inspection Methodology 6
 1.12.1 Process Verification Inspection 6
 1.12.2 Visual Inspection ... 6
 1.13 Facilities .. 7
 1.13.1 Environmental Controls 7
 1.13.2 Field Assembly Operations 8
 1.13.3 Health and Safety .. 8
 1.14 Electrostatic Discharge (ESD) 8

2.0 APPLICABLE DOCUMENTS ... 9
 2.1 IPC ... 9
 2.2 JEDEC .. 9
 2.3 Joint Industry Standards 10
 2.4 ASTM ... 10
 2.5 EOS/ESD Association, Inc. 10
 2.6 International Electrotechnical Commission 10
 2.7 SAE International .. 10
 2.8 Military Standards ... 10
 2.9 Aerospace Industries Association / National Aeronautics Standards 10

3.0 MATERIALS, COMPONENTS AND EQUIPMENT REQUIREMENTS 11
 3.1 Materials .. 11
 3.2 Solder ... 11
 3.2.1 Solder – Pb-Free ... 11
 3.2.2 Solder Purity Maintenance 11
 3.3 Flux ... 12
 3.3.1 Flux Application .. 12
 3.4 Adhesives .. 12
 3.5 Chemical Strippers ... 12
 3.6 Components ... 13
 3.6.1 Component and Seal Damage 13
 3.6.2 Coating Meniscus ... 13
 3.7 Tools and Equipment .. 13

4.0 GENERAL SOLDERING AND ASSEMBLY REQUIREMENTS 15
 4.1 Solderability ... 15
 4.2 Solderability Maintenance 15
 4.3 Removal of Component Surface Finishes 15
 4.3.1 Gold Removal .. 15
 4.3.2 Other Metallic Surface Finishes Removal 15
8.3.2 Level 2 – Minor Changes with Supporting Objective Evidence .. 64
8.4 Foreign Object Debris (FOD) .. 64
8.5 Visible Residues ... 65
8.6 Non-ionic Residues ... 65
8.7 Ultrasonic Cleaning Processes .. 65
8.8 Guidance Documents ... 65

9.0 PRINTED BOARD REQUIREMENTS .. 67
9.1 Printed Board Damage ... 67
9.1.1 Blistering/Delamination ... 67
9.1.2 Weave Exposure/Cut Fibers 67
9.1.3 Haloing ... 67
9.1.4 Edge Delamination ... 67
9.1.5 Land/Conductor Separation 67
9.1.6 Land/Conductor Reduction in Size 67
9.1.7 Flexible Circuitry Delamination 67
9.1.8 Flexible Circuitry Damage .. 67
9.1.9 Burns .. 67
9.1.10 Non-Soldered Edge Contacts 67
9.1.11 Measles ... 67
9.1.12 Crazing ... 68
9.2 Marking .. 68
9.3 Bow and Twist (Warpage) .. 68
9.4 Depanelization ... 68

10.0 COATING, ENCAPSULATION AND STAKING (ADHESIVE) .. 69
10.1 Conformal Coating .. 69
10.1.1 Materials ... 69
10.1.2 Masking .. 69
10.1.3 Application ... 69
10.1.4 Thickness ... 69
10.1.5 Uniformity ... 69
10.1.6 Bubbles and Voids ... 69
10.1.7 Delamination ... 70
10.1.8 Foreign Objects Debris .. 70
10.1.9 Other Visual Conditions ... 70
10.1.10 Inspection ... 70
10.1.11 Rework or Touchup .. 70
10.2 Encapsulation ... 70
10.2.1 Application ... 70
10.2.2 Performance Requirements ... 70
11.0 WITNESS (TORQUE/ANTI-TAMPERING) STRIPE

12.0 REWORK AND REPAIR

12.2 Repair ... 77

12.3 Post Rework/Repair Cleaning 77

APPENDIX A Guidelines for Soldering Tools and Equipment........... 79

APPENDIX B Minimum Electrical Clearance – Electrical Conductor Spacing 81

APPENDIX C J-STD-001 Guidance on Objective Evidence of Material Compatibility .. 83

APPENDIX D X-Ray Guidelines 87

Figures

Figure 1-1 Wire Overlap.. 5
Figure 1-1 Wire Overwrap... 5
Figure 4-1 Hole Obstruction... 16
Figure 4-2 Acceptable Wetting Angles.......................... 18
Figure 4-3 Hardware Sequence and Orientation........... 19
Figure 4-4 Example of Hardware Sequence and Orientation......... 19
Figure 5-1 Insulation Thickness.................................... 21
Figure 5-2 Flange Damage... 22
Figure 5-3 Flared Flange Angles 22
Figure 5-4 Terminal Mounting – Mechanical............... 22
Figure 5-5 Terminal Mounting – Electrical............... 23
Figure 5-6 Insulation Clearance Measurement.................. 23
Figure 5-7 Service Loop for Lead Wiring............................ 23
Figure 5-8 Stress Relief Examples 24
Figure 5-9 Insulation Sleeving 24
Figure 5-10 Wire and Lead Placement............................... 24
Figure 5-11 Bifurcated Terminal Side Route Placement with Wrap 25
Figure 5-12 Bifurcated Terminal Side Route Placement – Straight Though and Staked........ 25
Figure 5-13 Bifurcated Terminal Top and Bottom Route Connection... 26
Figure 5-14 Slotted Terminal.. 26
Figure 5-15 Hook Terminal Wire Placement.......................... 27
Figure 5-16 Acceptable Pierced or Perforated Terminal Wire Placement 27
Figure 5-17 Wires on Intermediate Turret, Bifurcated, and Pierced Terminals.......... 28
Figure 5-18 Solder Depression 28
Figure 5-19 Cup and Hollow Cylindrical Terminals – Vertical Fill of Solder 29
Figure 5-20 Vertical Fill Example 34
Figure 7-1 Surface Mount Device Lead Forming 35
Figure 7-2 Surface Mount Device Lead Forming 35
Figure 7-3 Bottom Only Terminations 38
Figure 7-4 Rectangular or Square End Chip Components 39
Figure 7-4A Rectangular or Square End Chip Components – 1, 2, 3 or 5 Side Termination(s) Center Termination (When Present) 40
Figure 7-5 Cylindrical End Cap Terminations 41
Figure 7-10 Butt/L Terminations for Modified Through-Hole Leads..................... 47
Figure 7-11 Butt/L Terminations for Solder Charged Leads 48
Figure 7-12 Flat Lug Leads... 49
Figure 7-12A SMD-4 LED ... 49
Figure 7-13 Tall Profile Components Having Bottom Only Terminations 50
Figure 7-14 Inward Formed L-Shaped Ribbon Lead 51
Figure 7-15 BGA Solder Ball Clearance 53
Figure 7-16 Bottom Termination Component 55
Figure 7-17 Bottom Thermal Plane Termination 56
Figure 7-18 Flattened Post Termination 57
Figure 7-19 P-Style Termination 58
Figure 7-20 Examples of Vertical Cylindrical Cans with Outward L-Shaped Lead Terminations 60
Figure 7-21 Vertical Cylindrical Cans with Outward L-Shaped Lead Terminations 60
Figure 7-22 Wrapped Terminal – SMT Inductor – Bottom View 61
Table 7-23 Wrapped Terminal – SMT Inductor – Top View 61
Table 7-24 Wrapped Terminal – SMT Component 61
Table 7-25 Wrapped Terminals .. 61
Table 7-26 Flexible and Rigid-Flex Circuity with Flat Unformed Leads .. 62
Table 10-1 Radial Ledged Components Whose Height Is Greater Than or Equal to Their Length or Diameter – Individual Rectangular Shaped Component ... 71
Table 10-2 Radial Ledged Components Whose Height Is Greater Than or Equal to Their Length or Diameter – Individual Cylindrically Shaped Component ... 72
Table 10-3 Radial Ledged Components Whose Longest Dimension Is Their Diameter or Length, e.g., TO5 Semiconductors 72
Table 10-4 Radial Ledged Components Whose Height Is Greater Than or Equal to Their Length or Diameter – Closely Spaced Arrays 72
Table 11-1 Torque Stripe on Fastener – Acceptable 75
Table 11-2 Torque Stripe on Fastener – Defect 75
Table D-1 Circumferential Solder Separation .. 87
Table D-2 Solder Voids .. 87

Tables
Table 1-1 Design, Fabrication and Acceptability Specifications 1
Table 1-2 Magnification Aid Applications for Solder Connections 7
Table 1-3 Magnification Aid Applications for Wires and Wire Connections, Note 1 7
Table 1-4 Magnification Aid Applications, Note 1 .. 7
Table 3-1 Maximum Limits of Solder Bath Contaminant .. 12
Table 4-1 Solder Connection Anomalies ... 18
Table 5-1 Allowable Strand Damage, Notes 1, 2, 3 21
Table 5-2 Terminal Mounting Minimum Soldering Requirements 23
Table 5-3 Turret and Straight Pin Wire Wrap ... 24
Table 5-4 AWG 30 and Smaller Wire Wrap ... 25
Table 5-5 Bifurcated Terminal Wire Placement – Side Route with Wrap 25
Table 5-6 Bifurcated Terminal Side Route Straight-Through Staking 25
Table 5-7 Bifurcated Terminal Wire Placement – Bottom Route 26
Table 5-8 Hook Terminal Wire Placement .. 27
Table 5-9 Pierced or Perforated Terminal Wire Placement 27
Table 5-10 Solder Requirements Lead/Wire to Post 28
Table 6-1 Component to Land Clearance .. 31
Table 6-2 Components with Spacers ... 31
Table 6-3 Lead Bend Radius ... 32
Table 6-4 Protrusion of Leads in Supported Holes .. 33
Table 6-5 Protrusion of Leads in Unsupported Holes 33
Table 6-6 Supported Holes with Component Leads, Minimum Acceptable Conditions, Note 1 34
Table 6-7 Unsupported Holes with Component Leads, Minimum Acceptable Conditions, Notes 1, 4 .. 34
Table 7-1 SMT Lead Forming Minimum Lead Length (L) 35
Table 7-2 Surface Mount Components Soldering Requirements 37
Table 7-3 Dimensional Criteria – Bottom Only Chip Component Terminations 38
Table 7-4 Dimensional Criteria – Rectangular or Square End Chip Components – 1, 2, 3 or 5 Side Termination(s) 39
Table 7-4A Dimensional Criteria – Center Termination (When Present) – Rectangular or Square End Chip Components – 1, 2, 3 or 5 Side Termination(s) 40
Table 7-5 Dimensional Criteria – Cylindrical End Cap Terminations 41
Table 7-5A Dimensional Criteria – Center Termination (When Present) – Cylindrical End Cap Terminations 42
Table 7-6 Dimensional Criteria – Castellated Terminations 43
Table 7-7 Dimensional Criteria – Flat Gull Wing Leads 44
Table 7-8 Dimensional Criteria – Round or Flattened (Coined) Gull Wing Leads 45
Table 7-9 Dimensional Criteria – J Leads .. 46
Table 7-10 Dimensional Criteria – Butt/I Connections 47
Table 7-11 Dimensional Criteria – Butt/I Terminations – Solder Charged Terminations 48
Table 7-12 Dimensional Criteria – Flat Lug Leads, Note 5 49
Table 7-13 Dimensional Criteria – Tall Profile Components Having Bottom Only Terminations 50
Table 7-14 Dimensional Criteria – Inward Formed L-Shaped Ribbon Leads, Note 5 51
Table 7-15 Dimensional Criteria – Ball Grid Array Components with Collapsing Balls 53
Table 7-16 Ball Grid Array Components with Noncollapsing Balls 54
Table 7-17 Column Grid Array ... 54
Table 7-18 Dimensional Criteria – BTC ... 55
Table 7-19 Dimensional Criteria – Bottom Thermal Plane Terminations 56
Table 7-20 Dimensional Criteria – Flattened Post Terminations ... 57
Table 7-21 Dimensional Criteria – P-Style Terminations ... 58
Table 7-22 Dimensional Criteria – Vertical Cylindrical Cans with Outward L-Shaped Lead Terminations ... 59
Table 7-23 Dimensional Criteria – Wrapped Terminals.... 61
Table 7-24 Dimensional Criteria – Flexible and Rigid-Flex Circuitry with Flat Unformed Leads.. 62
Table 8-1 Designation of Surfaces to be Cleaned 63
Table 8-2 Residue Testing For Process Control 63
Table 8-3 Maximum Acceptable Rosin, Note 1 65
Table 10-1 Coating Thickness .. 69
Requirements for Soldered Electrical and Electronic Assemblies

1.0 GENERAL

1.1 Scope This standard describes materials, methods and acceptance criteria for producing soldered electrical and electronic assemblies. The intent of this document is to rely on process control methodology to ensure consistent quality levels during the manufacture of products. It is not the intent of this standard to exclude any procedure, such as for component placement or for applying flux and solder used to make the electrical connection.

The soldering operations, equipment, and conditions described in this document are based on electrical/electronic circuits designed and fabricated in accordance with the specifications listed in Table 1-1.

1.2 Purpose This standard prescribes material requirements, process requirements, and acceptability requirements for the manufacture of soldered electrical and electronic assemblies. For a more complete understanding of this document’s recommendations and requirements, one may use this document in conjunction with IPC-HDBK-001, IPC-AJ-820 and IPC-A-610. Standards may be updated at any time, including with the addition of amendments. The use of an amendment or a newer revision is not automatically required.

1.3 Classification This standard recognizes that electrical and electronic assemblies are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in manufacturability, complexity, functional performance requirements, and verification (inspection/test) frequency.

Use of this standard requires agreement on the class to which the product belongs. The User has the responsibility for identifying the class to which the assembly is produced. The product class should be stated in the procurement documentation package. If the User does not establish and document the acceptance class, the Manufacturer may do so.

CLASS 1 General Electronic Products
Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products
Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products
Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

1.4 Measurement Units and Applications This standard uses International System of Units (SI) units per ASTM SI10, IEEE/ASTM SI 10, Section 3 [Imperial English equivalent units are in brackets for convenience]. The SI units used in this standard are millimeters (mm) [in] for dimensions and dimensional tolerances, Celsius (°C) [°F] for temperature and temperature tolerances, grams (g) [oz] for weight, and lux for illuminance.

Note: This standard uses other SI prefixes (ASTM SI10, Section 3.2) to eliminate leading zeroes (for example, 0.0012 mm becomes 1.2 µm) or as alternative to powers-of-ten (3.6 x 10³ mm becomes 3.6 m).

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Design</th>
<th>Fabrication/Acceptability Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Requirements</td>
<td>IPC-2221</td>
<td>IPC-6011</td>
</tr>
<tr>
<td>Rigid Printed Boards</td>
<td>IPC-2222</td>
<td>IPC-6012; IPC-A-600</td>
</tr>
<tr>
<td>Flexible Circuits</td>
<td>IPC-2223</td>
<td>IPC-6013</td>
</tr>
<tr>
<td>Rigid Flex Board</td>
<td>IPC-2223</td>
<td>IPC-6013</td>
</tr>
</tbody>
</table>