Table of Contents

1 FOREWORD ... 1
1.1 Purpose ... 1
1.2 Scope ... 1
1.3 Assembly Processes 1
1.3.1 Mass Reflow 1
1.3.2 Localized Heating 1
1.3.3 Socketed Devices 1
1.3.4 Point-to-Point Soldering 1
1.3.5 Aqueous Point Soldering 1
1.4 Reliability .. 2
1.5 Terms and Definitions 2
1.5.1 Active Desiccant 2
1.5.2 Bar Code Label 2
1.5.3 Bulk Reflow 2
1.5.4 Carrier ... 2
1.5.5 Desiccant 2
1.5.6 Floor Life 2
1.5.7 Humidity Indicator Card (HIC) 2
1.5.8 Manufacturer’s Exposure Time (MET) 2
1.5.9 Moisture-BARRIER Bag (MBB) 2
1.5.10 Moisture-Sensitive Identification (MSID) 2
1.5.11 Moisture-Sensitivity Level (MSL) 2
1.5.12 Rework ... 2
1.5.13 Process-Sensitivity Level (PSL) 2
1.5.14 Shelf Life (of a device in a sealed MBB) 2
1.5.15 SMD .. 3
1.5.16 Solder Reflow 3
1.5.17 Water Vapor Transmission Rate (WVTR) 3
2 APPLICABLE DOCUMENTS (Normative) 3
2.1 American Society for Testing and Materials (ASTM) . 3
2.2 Electronic Industries Alliance (ECIA, JEDEC) 3
2.3 IPC Standards 3
2.4 Joint Industry Standards 3
2.5 Department of Defense 3
3 DRY PACKING .. 3
3.1 Requirements 3
3.2 Drying of SMD Packages and Carrier Materials Before Being Sealed in MBBs 4
3.2.1 Drying Requirements - Levels 2a - 5a 4
3.2.2 Drying Requirements for Carrier Materials 4
3.2.3 Drying Requirements 4
3.2.4 Excess Time Between Bake and Bag 4
3.3 Dry Pack ... 4
3.3.1 Description 4
3.3.2 Materials 4
3.3.3 Labels ... 6
3.3.4 Moisture Barrier Bag Sealing 7
3.3.5 Dry-Pack Precautions 7
3.3.6 Shelf Life 8
4 DRYING ... 8
4.1 Post Exposure to Factory Ambient 10
4.1.1 Any Duration Exposure 10
4.1.2 Short Duration Exposure 10
4.2 General Considerations for Baking 11
4.2.1 High Temperature Carriers 11
4.2.2 Low Temperature Carriers 11
4.2.3 Paper and Plastic Container Items 11
4.2.4 Bakeout Times 11
4.2.5 ESD Protection 11
4.2.6 Reuse of Carriers 11
4.2.7 Solderability Limitations 11
5 USE .. 11
5.1 Incoming Bag Inspection 11
5.1.1 Upon Receipt 11
5.1.2 Device Inspection 12
5.2 Floor Life ... 12
5.3 Safe Storage 12
5.3.1 Dry Pack 12
5.3.2 Shelf Life 12
5.3.3 Dry Atmosphere Cabinet 12
5.4 Reflow .. 12
5.4.1 Opened MBB 12
5.4.2 Reflow Temperature Extremes 12
5.4.3 Additional Thermal Profile Parameters 13
5.4.4 Multiple Reflow 13
5.4.5 Maximum Reflow Passes 13
5.5 Drying Indicators 13
5.5.1 Excess Humidity in Dry Pack 13
5.5.2 Floor Life or Ambient Temperature/Humidity Exceeded 13
5.5.3 Level 6 SMD Packages 13
6 BOARD REWORK 13
6.1 Device Removal, Rework and Remount 13
6.1.1 Removal for Failure Analysis 14
6.1.2 Removal and Remount 14
6.2 Baking of Populated Boards 14
7 DERATING DUE TO FACTORY ENVIRONMENTAL CONDITIONS

APPENDIX A Test Method for Reversible (Type 1) RH Spots on a Humidity Indictor Card (HIC) used with Electronic Device Packaging

APPENDIX B Derivation of Bake Tables

APPENDIX C Desiccant Unit Absorption Capacity Test Method for Verification

APPENDIX D Changes in J-STD-033D

Figures

- Figure 3-1 Typical Dry-Pack Configuration for Moisture-Sensitive SMD Packages in Shipping Tubes
- Figure 3-2A Humidity Indicator Card (HIC) – Type 1
- Figure 3-2B Humidity Indicator Card (HIC) – Type 2
- Figure 3-3 Moisture-Sensitive Identification Label (Examples)
- Figure 3-4A Caution Label (Examples with MSL only)
- Figure 3-4B Caution Label (Examples with MSL and PSL)
- Figure 3-5 MBB with No Evacuation (Example)
- Figure 3-6 MBB with Recommended Light Air Evacuation (Example)
- Figure 3-7 MBB with Too Much (Full) Evacuation (Example)
- Figure A-1 Photo of Testing Apparatus

Tables

- Table 3-1 Dry-Packing Requirements
- Table 3-2 Typical Reversible (Type 1) HIC Spot Compliance
- Table 4-1 Reference Conditions for Drying Mounted or Unmounted SMD Packages
- Table 4-2 Supplier Bake: Default Baking Times Used Prior to Dry Pack
- Table 4-3 Resetting or Pausing the Floor-Life Clock at User Site
- Table 5-1 Moisture Classification Level (MSL) and Floor Life per J-STD-020
- Table 7-1 Recommended Equivalent Total Floor Life (days) @ 20 °C, 25 °C & 30 °C, 35 °C For ICs with Novolac, Biphenyl and Multifunctional Epoxies (Reflow at same temperature at which the device was classified) Maximum Percent Relative Humidity
Handling, Packing, Shipping and Use of Moisture, Reflow, and Process Sensitive Devices

1 FOREWORD

The advent of surface mount devices (SMDs) introduced a new class of quality and reliability concerns regarding damage such as “cracks and delamination” from the solder reflow process. This document describes the standardized levels of floor-life exposure for moisture/reflow sensitive SMDs along with the handling, packing and shipping requirements necessary to avoid moisture/reflow related failures. Companion documents J-STD-020, J-STD-075 and JEP113 define the classification procedure and the labeling requirements, respectively.

For moisture sensitivity, moisture from atmospheric humidity enters permeable packaging materials by diffusion. Assembly processes used to solder SMDs to printed circuit boards (PCBs) expose the entire package body to temperatures higher than 200 °C. During solder reflow, the combination of rapid moisture expansion, materials mismatch, and material interface degradation can result in cracking and/or delamination of critical interfaces within the device.

Typical solder reflow processes of concern for all devices are convection, convection/IR, infrared (IR), vapor phase (VPR), hot air rework tools, and wave solder, including full immersion.

Non-semiconductor devices may exhibit additional process sensitivities beyond moisture sensitivity such as thermal sensitivity, flux sensitivity or cleaning process sensitivity.

1.1 Purpose The purpose of this document is to provide manufacturers and users with standardized methods for handling, packing, shipping, and use of moisture/reflow and process sensitive devices that have been classified to the levels defined in J-STD-020 or J-STD-075. These methods are provided to avoid damage from moisture absorption and exposure to solder reflow temperatures that can result in yield and reliability degradation. By using these procedures, safe and damage-free reflow can be achieved. The dry-packing process defined herein provides a minimum shelf life of 12 months from the seal date.

1.2 Scope This standard applies to all devices subjected to bulk solder reflow processes during PCB assembly, including plastic encapsulated packages, process sensitive devices and other moisture sensitive devices made with moisture-permeable materials (epoxies, silicones, etc.) that are exposed to the ambient air.

1.3 Assembly Processes

1.3.1 Mass Reflow This standard applies to bulk solder reflow assembly by convection, convection/IR, infrared (IR), and vapor phase (VPR) processes. It does not apply to bulk solder reflow processes that immerse the device bodies in molten solder (e.g., wave soldering bottom mounted devices). Such processes are not allowed for many SMDs and are not covered by the device qualifications standards used as a basis for this document.

1.3.2 Localized Heating This standard also applies to moisture/reflow sensitive SMD packages that are removed or attached singly by local ambient heating, i.e., “hot air rework.” See Clause 6.

1.3.3 Socketed Devices

This standard does not apply to SMD packages that are socketed and not exposed to solder reflow temperatures during either bulk reflow or rework of adjacent devices. Such SMD packages are not at risk and do not require moisture precautionary handling.

1.3.4 Point-to-Point Soldering This standard does not apply to SMD packages in which only the leads are heated to reflow the solder, e.g., hand-soldering, hot bar attach of gull wing leads, and through hole by wave soldering. The heat absorbed by the package body from such operations is typically much lower than for bulk surface mount reflow or hot air rework and moisture precautionary measures are typically not needed.

1.3.5 Aqueous Cleaning For non-cavity SMDs typical short term aqueous cleaning processes will not impact the floor life (internal moisture content). Special consideration should be given to non-hermetic cavity packages.