This is a preview of "ANSI/ISA S67.01-1994". Click here to purchase the full version from the ANSI store.

ANSI/ISA-S67.01-1994

Approved April 8, 1996

American National Standard

Transducer and Transmitter Installation For Nuclear Safety Applications

ANSI/ISA-S67.01 — Transducer and Transmitter Installation For Nuclear Safety Applications

ISBN: 1-55617-542-6

Copyright © 1995 by the Instrument Society of America. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the publisher.

ISA 67 Alexander Drive P.O. Box 12277 Research Triangle Park, North Carolina 27709

Preface

This preface, as well as all annexes and footnotes, is included for informational purposes and is not a part of ANSI/ISA-S67.01.

This revised standard has been prepared as a part of the service of ISA, the international society for measurement and control, toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subjected to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Standards and Practices Board Secretary; ISA; 67 Alexander Drive; P. O. Box 12277; Research Triangle Park, NC 27709; Telephone (919) 549-8411; Fax (919) 549-8288; e-mail: standards@isa.org.

Begun in April 1974, under the directorship of Robert L. Galley and the assistance of H. C. Schmidt, W. M. Deutsch, J. A. Nay, and M. J. Kimbell, this standard was one of the first ISA ventures directed specifically at the nuclear power industry. Shortly thereafter, the ISA Nuclear Power Plant Standards Committee (NPPSC) was formed within the Power Industries Division of ISA to oversee the development of standards for the nuclear power industry and to serve as the SP67 Committee for those standards.

The question of definitions between "transducer" and "transmitter" was raised repeatedly in the early development of this standard. It was generally agreed that industry practice is to use "transmitter" for devices in which the values of the measurand are converted, operated upon, and scaled to a standardized output signal. In contrast, a "transducer" is commonly considered to be a fixed device for a single conversion of measurand value to some signal that is physically inherent to the "transducer" design, and that cannot be scaled or operated upon within the "transducer" itself. Thus, in common usage as seen by this Subcommittee, a "transmitter" will contain at least one "transducer" (and often several) along with amplifiers and other devices. However, the Subcommittee recognizes (with some reservation) that "transducer" can, through generic expansion, be used to designate devices commonly referred to as "transmitters." Because this standard is meant to apply to instruments included in both definitions, the word "transducer" has been selected for consistent use throughout. The user of this standard is respectfully requested to include the instrument person's common usage of "transmitter" or "sensor" as part of the thought process when the single word "transducer" appears.

It is important to note that the installation of transducers, if not done properly, can negate the suitability of a device for its use in nuclear safety-related systems. Since there are many different instrument service conditions and a wide variety of viable system and instrument designs, the user of this standard will find that the design responsibilities, rather than the design itself, are sometimes delineated herein.

The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of units in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards, recommended practices, and technical reports. The Department is further aware of the benefits to USA users of ISA Standards of incorporating suitable references to the SI (and the metric system) in their business and professional dealings with other countries. Toward this end, this Department will endeavor to introduce SI and SI-acceptable metric units as optional alternatives to English units in all new and revised standards, recommended practices, and technical reports to the greatest extent possible. SI (metric) unit conversions in this standard are given only to the precision intended in selecting the original numerical value. When working in the SI units system, the given SI value should be used.

The following people served as members of ISA Subcommittee SP67.01:

NAME

J. Nay, Chairman *P. Wicyk, Vice Chairman M. Berkovich B. Gordon R. Gotcher S. Kincaid *K. Melson R. Neustadter J. Sandstrom B. Stevens, Jr. J. Turnbull *R. Weldon F. Zikas

COMPANY

Westinghouse Electric Corporation Commonwealth Edison Company Bechtel Corporation Bechtel Savannah River, Inc. Weed Instrument Company Consultant Hurst Engineering, Inc. Raytheon Engineers & Constructors, Inc. Rosemount, Inc. Department of Energy ITT Barton Hurst Engineering, Inc. Parker-Hannifin Corporation

The following people served as members of ISA Committee SP67:

NAME

COMPANY

R. Wiegle, Chairman	PECO Energy Company
R. Naylor, Vice Chairman	Commonwealth Edison Company
R. Webb, Managing Director	Pacific Gas & Electric Company
R. Allen	ABB Combustion Engineering, Inc.
M. Annon	I&C Engineering Associates
J. Arpin	Combustion Engineering, Inc.
B. Basu	Southern California Edison Company
M. Belew	Tennessee Valley Authority
M. Berkovich	Bechtel Corporation
B. Beuchel	NAESCO
R. Brown	ABB Impell Corporation
G. Cooper	Commonwealth Edison Company
N. Dogra	Impell Corporation
R. Dulski	Conax Buffalo Corporation
A. Ellis	Westinghouse Electric Corporation
R. Estes	Hurst Engineering, Inc.
H. Evans	Pyco, Inc.
R. Forman	Process Automation Technology
V. Fregonese	Public Service Electric & Gas
R. Givan	Sargent & Lundy
B. Gordon	Bechtel Savannah River, Inc.
T. Grochowski	UNC Engineering Services, Inc.
S. Hedden	Commonwealth Edison Company
K. Herman	Pacific Gas & Electric Company
R. Hindia	Sargent & Lundy
E. Hubner	Stone & Webster

*One vote per company

NAME

J. Lipka
P. Loeser
B. McMillen
L. McNeil
G. Minor
*J. Mock
*J. Nay
R. Neustadter
R. Profeta
*J. Redmon
A. Schager
F. Semper
*T. Slavic
W. Sotos
*I. Sturman
B. Sun
*C. Tuley
K. Utsumi
*G. Whitmore
*P. Wicyk
F. Zikas

COMPANY

Consultant U.S. Nuclear Regulatory Commission Nebraska Public Power District INPO **MHB** Technical Associates **Bechtel Corporation** Westinghouse Electric Corporation Raytheon Engineers & Constructors, Inc. S. Levy, Inc. Southern California Edison Consultant Semper Engineering Duquesne Light Company American Electric Power Service Corp. Bechtel Corporation **Electric Power Research Institute** Westinghouse Electric Corporation **General Electric Company** Duquesne Light Company Commonwealth Edison Company Parker-Hannifin Corporation

This published standard was approved for publication by the ISA Standards and Practices Board on November 15, 1994.

NAME

M. Widmeyer, Vice President	The Supply System
H. Baumann	H. D. Baumann & Associates, Ltd.
D. Bishop	Chevron USA Production Company
W. Calder III	Foxboro Company
C. Gross	Dow Chemical Company
H. Hopkins	Utility Products of Arizona
A. Iverson	Lyondell Petrochemical Company
K. Lindner	Endress + Hauser GmbH + Company
T. McAvinew	Metro Wastewater Reclamation District
A. McCauley, Jr.	Chagrin Valley Controls, Inc.
G. McFarland	ABB Power Plant Controls
J. Mock	Bechtel
E. Montgomery	Fluor Daniel, Inc.
D. Rapley	Rapley Engineering Services
R. Reimer	Allen-Bradley Company
R. Webb	Pacific Gas & Electric Company
W. Weidman	Gilbert Commonwealth, Inc.
J. Weiss	Electric Power Research Institute
J. Whetstone	National Institute of Standards & Technology

*One vote per company

COMPANY

NAME

- C. Williams G. Wood
- M. Zielinski

COMPANY

Eastman Kodak Company Graeme Wood Consulting Fisher-Rosemount

Contents

1	Scope	9		
2	Purpose	9		
3	Definitions and terminology	9		
4	Safety classification	. 10		
	4.1 Code applicability	. 10		
5	Equipment mounting	. 11		
	 5.1 Mounting of in-line transducers 5.2 Mounting of off-line transducers 5.3 Mechanical protection 5.4 Auxiliary equipment 	11 12 14 14		
6	Location of equipment	. 14		
	 6.1 Selecting a location 6.2 Separation of redundant transducers 6.3 Accessibility for periodic test and service 6.4 Auxiliary equipment 	14 14 15 15		
7	Environmental considerations	. 15		
	 7.1 Seismic considerations	15 15 16 16 16		
8	Interface connections	. 16		
	8.1 Process fluid connections8.2 Types of instrument connections8.3 Electrical connection	16 17 18		
9	Service, calibration, and test facilities	. 19		
	 9.1 Calibration test connectors (input) 9.2 Vents and drains 9.3 Signal test connections (output) 9.4 Communications 9.5 Labeling 	19 19 19 19 19 20		
10 Quality assurance				
Α	nnex A — References and bibliography	21		

This is a preview of "ANSI/ISA S67.01-1994". Click here to purchase the full version from the ANSI store.

1 Scope

This Standard covers the installation of transducers for nuclear safety-related applications.

2 Purpose

This Standard establishes requirements and recommendations for the installation of transducers and auxiliary equipment for nuclear applications outside of the main reactor vessel.

3 Definitions and terminology

ISA-S51.1^{*} is the basic reference for terms not defined herein. ISA-S37.1^{*} is the reference for terms not included in S51.1.

3.1 auxiliary equipment: Separate devices, such as field-mounted power supplies, that are appended to the basic transducer and are located in the same general area as the transducer. Equipment located away from the transducer (such as control-board-mounted controllers and rack-mounted power supplies) is not included in the definition as used in this Standard.

3.2 Code: Refers to the ASME Boiler and Pressure Vessel Code, Section III^{*} and other sections required to implement the requirements of Section III.

3.3 Code class: The applicability of the Code, determined through consideration of pressureboundary integrity.

3.4 in-line: Transducers exposed directly to the process fluid in piping, vessels, equipment, or the main flow paths of fluid systems.

3.5 nuclear safety-related: That which is essential to

- a) emergency reactor shutdown;
- b) containment isolation;
- c) reactor core cooling;
- d) containment or reactor heat removal;
- e) prevention or mitigation of a significant release of radioactive material to the environment; or
- f) maintaining safe shutdown conditions;

^{*}See References and bibliography