Setting the Standard for Automation™

Standards Certification Education & Training

Conferences & Exhibits

Publishing

STANDARD

ISA-88.00.04-2006

Batch Control Part 4: Batch Production Records

Approved 25 April 2006

NOTICE OF COPYRIGHT

This is a copyright document and may not be copied or distributed in any form or manner without the permission of ISA. This copy of the document was made for the sole use of the person to whom ISA provided it and is subject to the restrictions stated in ISA's license to that person. It may not be provided to any other person in print, electronic, or any other form. Violations of ISA's copyright will be prosecuted to the fullest extent of the law and may result in substantial civil and criminal penalties.

ISA-88.00.04-2006 Batch Control Part 4: Batch Production Records

ISBN: 978-1-55617-978-5

Copyright © 2006 by ISA. All rights reserved. Not for resale. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the Publisher.

ISA 67 Alexander Drive P. O. Box 12277 Research Triangle Park, North Carolina 27709 USA

ISA-88.00.04-2006

Preface

This preface, as well as all footnotes and annexes, is included for information purposes and is not part of ISA-88.00.04-2006.

This standard has been prepared as part of the service of ISA toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subject to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P. O. Box 12277; Research Triangle Park, NC 27709; Telephone (919) 549-8411; Fax (919) 549-8288; E-mail: standards@isa.org.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards, recommended practices, and technical reports. Participation in the ISA standards-making process by an individual in no way constitutes endorsement by the employer of that individual, of ISA, or of any of the standards, recommended practices, and technical reports that ISA develops.

CAUTION — ISA ADHERES TO THE POLICY OF THE AMERICAN NATIONAL STANDARDS INSTITUTE WITH REGARD TO PATENTS. IF ISA IS INFORMED OF AN EXISTING PATENT THAT IS REQUIRED FOR USE OF THE STANDARD, IT WILL REQUIRE THE OWNER OF THE PATENT TO EITHER GRANT A ROYALTY-FREE LICENSE FOR USE OF THE PATENT BY USERS COMPLYING WITH THE STANDARD OR A LICENSE ON REASONABLE TERMS AND CONDITIONS THAT ARE FREE FROM UNFAIR DISCRIMINATION.

EVEN IF ISA IS UNAWARE OF ANY PATENT COVERING THIS STANDARD, THE USER IS CAUTIONED THAT IMPLEMENTATION OF THE STANDARD MAY REQUIRE USE OF TECHNIQUES, PROCESSES, OR MATERIALS COVERED BY PATENT RIGHTS. ISA TAKES NO POSITION ON THE EXISTENCE OR VALIDITY OF ANY PATENT RIGHTS THAT MAY BE INVOLVED IN IMPLEMENTING THE STANDARD. ISA IS NOT RESPONSIBLE FOR IDENTIFYING ALL PATENTS THAT MAY REQUIRE A LICENSE BEFORE IMPLEMENTATION OF THE STANDARD OR FOR INVESTIGATING THE VALIDITY OR SCOPE OF ANY PATENTS BROUGHT TO ITS ATTENTION. THE USER SHOULD CAREFULLY INVESTIGATE RELEVANT PATENTS BEFORE USING THE STANDARD FOR THE USER'S INTENDED APPLICATION.

HOWEVER, ISA ASKS THAT ANYONE REVIEWING THIS STANDARD WHO IS AWARE OF ANY PATENTS THAT MAY IMPACT IMPLEMENTATION OF THE STANDARD NOTIFY THE ISA STANDARDS AND PRACTICES DEPARTMENT OF THE PATENT AND ITS OWNER.

ADDITIONALLY, THE USE OF THIS STANDARD MAY INVOLVE HAZARDOUS MATERIALS, OPERATIONS OR EQUIPMENT. THE STANDARD CANNOT ANTICIPATE ALL POSSIBLE APPLICATIONS OR ADDRESS ALL POSSIBLE SAFETY ISSUES ASSOCIATED WITH USE IN HAZARDOUS CONDITIONS. THE USER OF THIS STANDARD MUST EXERCISE SOUND PROFESSIONAL JUDGMENT CONCERNING ITS USE AND APPLICABILITY UNDER THE USER'S PARTICULAR CIRCUMSTANCES. THE USER MUST ALSO CONSIDER THE APPLICABILITY OF ANY GOVERNMENTAL REGULATORY LIMITATIONS AND ESTABLISHED SAFETY AND HEALTH PRACTICES BEFORE IMPLEMENTING THIS STANDARD.

THE USER OF THIS DOCUMENT SHOULD BE AWARE THAT THIS DOCUMENT MAY BE IMPACTED BY ELECTRONIC SECURITY ISSUES. THE COMMITTEE HAS NOT YET ADDRESSED THE POTENTIAL ISSUES IN THIS VERSION. ISA-88.00.04-2006

THE STANDARD IS STRUCTURED TO FOLLOW INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC) GUIDELINES. THEREFORE, THE FIRST THREE CLAUSES PRESENT THE SCOPE OF THE STANDARD, NORMATIVE REFERENCES, AND DEFINITIONS, IN THAT ORDER.

CLAUSE 4 IS INFORMATIVE. IT DESCRIBES THE PURPOSE, CONTENTS, LIFECYCLE AND USE OF BATCH PRODUCTION RECORDS.

CLAUSE 5 IS NORMATIVE. IT DESCRIBES THE OBJECT MODEL ASSOCIATED WITH THE BATCH PRODUCTION RECORD.

CLAUSE 6 IS NORMATIVE. IT STATES THE COMPLETENESS, COMPLIANCE, AND CONFORMANCE REQUIREMENTS FOR THIS STANDARD.

ANNEX A IS INFORMATIVE. IT DEFINES THE DATA MODELING TECHNIQUES USED.

ANNEX B IS INFORMATIVE. IT PRESENTS A LIST OF FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT THIS STANDARD AS IT IS CURRENTLY ENVISIONED.

THIS STANDARD IS INTENDED FOR THOSE WHO ARE:

- RESPONSIBLE FOR DEFINING PRODUCT PROCESSING REQUIREMENTS
- RESPONSIBLE FOR DEFINING PRODUCT REPORTING REQUIREMENTS
- INVOLVED IN DESIGNING AND/OR OPERATING BATCH MANUFACTURING PLANTS
- RESPONSIBLE FOR SPECIFYING CONTROLS AND THE ASSOCIATED APPLICATION PROGRAMS FOR BATCH MANUFACTURING PLANTS
- INVOLVED IN THE DESIGN AND MARKETING OF PRODUCTS IN THE AREA OF BATCH CONTROL
- USE PRODUCT INFORMATION FOR THE PURPOSES OF MANUFACTURING OR MANAGING THE MANUFACTURE OF PRODUCT

The following individuals served as members of the ISA-SP88 Part 4 Working Group, which was responsible for preparing this standard:

NAME

AFFILIATION

K. Waters, <i>Working Group Chair</i> D. Brandl, <i>ISA-SP88 Chair</i> M. Albano J. Blanchard S. Brennan D. Chappell L. Charpentier K. Conner D. Cornell L. Craig	Genentech Inc BR&L Consulting Honeywell Inc ARC Advisory Group Invensys Procter & Gamble NovaTech Process Solutions LLC Emerson Process Management Procter & Gamble MAA Inc
D. Cornell	Procter & Gamble
L. Craig	MAA Inc
I. Crowl	Genentech Inc
L. Domingo	AspenTech
R. Dwiggins	Invensys

ISA-88.00.04-2006

D. Emerson L. Falkenau A. Finucci A. Ghosh A. Gillanders B. Hawkins M. Heatherman J. Hoffman G. Hood M. James E. Lynch T. McFarlane C. Marklew P. Mars T. Nash L. Natiello D. Moffatt P. Nowicki A. Pampel L. Petersen N. Pettus L. Pillai J. Ruhe H. Salomons J. Sandoval B, Scholten J. Vieille	Yokogawa E.I. du Pont de Nemours EnteGreat Inc ARC Advisory Group DynoChem Inc HLQ Ltd ABB Inc ABB Inc Rockwell Automation Rockwell Automation Pfizer Inc Consultant Aston Dane Honeywell Inc Schering-Plough Covex Invensys Rockwell Automation A. F. Pampel Consulting NNE US Inc Emerson Process Management Pfizer ABB Inc Dow Dow Ordina Technical Automation Consultant Psynapses
	-7 - 1

The following individuals served as voting members or alternate members of ISA-SP88.

NAME

AFFILIATION

D. Brandl, ISA-SP88 Chair	BR&L Consulting
L. Craig, ISA-SP88 Chair Emeritus	MAA Inc
M. Albano	Honeywell Inc
S. Brennan	Invensys
D. Chappell	Procter & Gamble
L.Charpentier	NovaTech Process Solutions LLC
K. Conner	Emerson Process Management
D. Cornell	Procter & Gamble
T. Crowl	Genentech Inc
E. DelaHostria	Rockwell Automation
D. Emerson	Yokogawa
L. Falkenau	E.I. du Pont de Nemours
R. Fink	Rohm & Haas Engineering Division
A. Finucci	EnteGreat Inc
C. Gifford	GE Fanuc Automation Americas
A. Gillanders	DynoChem Inc
W. Hawkins	HLQ Ltd
M. Heatherman	ABB Inc
J. Hill	Merck & Co
J. Hoffman	ABB Inc
G. Hood	Rockwell Automation
M. James	Rockwell Automation

ISA-88.00.04-2006

B, Jensen	Yokogawa
B. Korkmaz	Automation Vision Inc
E. Lynch	Pfizer Inc
P. Mars	Honeywell Inc
P. Martin	ABB Inc
T. McFarlane	Consultant
D. Moffatt	Invensys
T. Mueller-Heinzerling	Siemens AG
T. Nash	Schering-Plough
P. Nowicki	Rockwell Automation
L. Petersen	NNE US Inc
N. Pettus	Emerson Process Management
V. Pillai	Pfizer Inc
L. Poulsen	NNE A/S
A. Sachs	Siemens AG
N. Sands	E.I. Du Pont de Nemours and Co.
T. Tom	Siemens Energy & Automation
J. Unger	Stone Technologies Inc
M. Van Epps	Pfizer
J Vieille	Psynapses
K. Waters	Genentech Inc

This standard was approved for publication by the ISA Standards and Practices Board on 14 April 2006.

AFFILIATION

NAME

I. Verhappen, President Syncrude Canada, Ltd. F. Amir E I Du Pont Co. D. Bishop Consultant M. Coppler Ametek Inc. B. Dumortier Schneider Electric W. Holland Consultant ACES Inc. E. Icavan Ivy Optiks A. Iverson R. Jones Consultant K. P. Lindner Endress + Hauser Process Solutions V. Maggioli Feltronics Corp. T. McAvinew Jacobs Engineering Group Chagrin Valley Controls Inc. A. McCauley G. McFarland **Emerson Process Management** R. Reimer **Rockwell Automation** J. Rennie Consultant N. Sands E I Du Pont Co. H. Sasajima Yamatake Corp. T. Schnaare Rosemount Inc. J. Tatera Tatera & Associates R. Webb Consultant W. Weidman Parsons Energy and Chemicals J. Weiss KEMA Inc. M. Widmeyer Stanford Linear Accelerator Center C. Williams Eastman Kodak Co. M. Zielinski **Emerson Process Management**

ISA-88.00.04-2006

Contents

1	Scope	15
2	Normative references	15
3	Definitions	15
4	Batch production record description	16
4.1	Introduction	16
4.2	Batch production record	17
4.3	Batch production record purpose	19
4.4	Batch production record data management	22
4.5	Batch production record structure	23
4.6	Production information	26
4.7	Batch production record elements	30
5	Batch production record object model	35
5.1	Introduction	35
5.2	Modeling information	35
5.3	Batch production record object model overview	.38
5.4	Batch production record	40
5.5	Batch production record entry	43
5.6	Event	43
5.7	Data set	51
5.8	Comment	57
5.9	Sample	57
5.1	0 Change	60
5.1	1 Personnel identification manifest	61
5.1	2 Resource qualification manifest	62
5.1	3 Product definition	63
5.1	4 Production response	63

ISA-88.00.04-2006

5.15	Production request	64
5.16	Control recipe	64
5.17	Recipe element	74
5.18	Master recipe	76
6 C	Completeness, compliance and conformance	78
6.1	Completeness	78
6.2	Compliance	78
6.3	Conformance	78
6.4	Extending the object model	78
Annex	A (informative) — Data modeling technique	79
Annex	B (informative) — Questions and Answers	81

List of Figures

Figure 1— Batch production record creation and use	17
Figure 2 — Batch production record component objects	24
Figure 3 — Example of a batch production record	25
Figure 4 — Example of elements referencing another elements	26
Figure 5 - Example of internal and referenced data	26
Figure 6 — Sample batch production record for a recipe element	28
Figure 7 — Batch production record with non-batch specific data	29
Figure 8 – Object reference model	38
Figure 9 - Batch production record top level model	39
Figure 10 - Batch production record object model	40
Figure 11 - Event model	44
Figure 12 - Example of event element relationships	44
Figure 13 – Data set model	52
Figure 14 - Sample time series data set	52

ISA-88.00.04-2006

Figure 15 - Elements of a time series data set	52
Figure 16 - Sample correlated data set	53
Figure 17 - Elements of a correlated data set	53
Figure 18 –Sample model	58
Figure 19 –Control recipe model	65
Figure 20 - Sample batch production record with two control recipe copies	65
Figure 21 - Recipe element model	75
Figure 22 – Master recipe model	76

List of Tables

Table 1 — Batch production record categories	31
Table 2 — Table example	38
Table 3 — Batch production record attributes	41
Table 4 – Batch production record entry attributes	43
Table 5 – Event attributes	45
Table 6 – Alarm event attributes	46
Table 7 – Standard event types	47
Table 8 – User-defined attribute attributes	50
Table 9 – Event association attributes	51
Table 10 – Data set attributes	54
Table 11 – Time specification attributes	54
Table 12 – Tag identification attributes	55
Table 13 – Data value attributes	56
Table 14 – Time value attributes	57
Table 15 – Comment attributes	57
Table 16 – Sample attributes	58
Table 17 – Sample test attributes	59

ISA-88.00.04-2006	— 10 —	

Table 18 – Sample test result attributes	60
Table 19 – Change attributes	61
Table 20 – Personnel identification manifest attributes	62
Table 21 –Qualification manifest attributes	63
Table 22 – Control recipe attributes	66
Table 23 – Control recipe header attributes	67
Table 24 – Equipment requirement attributes	68
Table 25 – Constraint attributes	69
Table 26 – Parameter attributes	70
Table 27 – Parameter value attributes	70
Table 28 – Link attributes	71
Table 29 – Step attributes	72
Table 30 – Transition attributes	73
Table 31 – Other information attributes	73
Table 32 – Other information value attributes	74
Table 33 – Recipe element attributes	75
Table 34 – Master recipe attributes	77

— 11 —

ISA-88.00.04-2006

FOREWORD

The formal decisions or agreements of the IEC on technical matters, prepared by technical committees on which all the National Committees having a special interest therein are represented, express, as nearly as possible, an international consensus of opinion on the subjects dealt with.

They have the form of recommendations for international use and they are accepted by the National Committees in that sense.

In order to promote international unification, the IEC expresses the wish that all National Committees should adopt the text of the IEC recommendation for their national rules in so far as national conditions will permit. Any divergence between the IEC recommendation and the corresponding national rules should, as far as possible, be clearly indicated in the latter.

The IEC has not laid down any procedure concerning marking as an indication of approval and has no responsibility when an item of equipment is declared to comply with one of its recommendations.

This page intentionally left blank.

ISA-88.00.04-2006

Introduction

ANSI-ISA-88.01-1995 (referred to as Part 1 throughout this standard) provides models and terminology applicable to batch control. Part 1 Clause 5.5 defines product information concepts, and Clause 6.4 defines production information management activities and functions.

ANSI/ISA-88.00.02-2001 (referred to as Part 2 throughout this standard) Clause 4 provides an object model of production information, and in Clause 5 defines batch history exchange tables. The Clause 5 batch history exchange tables are one implementation for production information.

Whereas the Parts 1 and 2 standards provide significant information concerning batch history and production information, they are not sufficient for use as specifications for implementing specific technologies and are lacking in scope and content.

This Part 4 standard provides a detailed definition for batch production records. This consists of a description and object model of batch production record contents.

The intended use of this batch production record standard is to provide a reference model for developing applications for the storage and/or exchange of batch production records. Implementations based upon this standard will allow retrieval, analysis, and reporting of selected batch production record data.

This batch production record standard is compliant with the batch data model in Clause 4 of ANSI/ISA-88.00.02-2001 as well as with ANSI/ISA-88.01-1995.

Although this standard is intended primarily for batch processes, it may be of considerable value for other types of processes.

This page intentionally left blank.

— 15 —

ISA-88.00.04-2006

1 Scope

This Part 4 standard defines a reference model for batch production records containing information about production of batches or elements of batch production. This standard is intended for batch processes.

2 Normative references

The following normative documents contain provisions, which through reference in this text, constitute provisions of this part of this standard. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of this standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below.

- ANSI/ISA-88.01-1995, Batch Control Part 1: Models and Terminology (referred to in this standard as "Part 1")
- ANSI/ISA-88.00.02-2001, Batch Control Part 2: Data Structures and Guidelines for Languages (referred to in this standard as "Part 2")
- ANSI/ISA-88.00.03-2003, Batch Control Part 3: General and Site Recipe Models and Representation (referred to in this standard as "Part 3")
- ANSI/ISA-95.00.01-2000, Enterprise-Control System Integration Part 1: Models and Terminology
- ANSI/ISA-95.00.02-2001, Enterprise-Control System Integration Part 2: Object Model Attributes
- ANSI/ISA-95.00.03-2005, Enterprise-Control System Integration Part 3: Models of Manufacturing Operations Management
- IEC 60050-351:1998, International Electrotechnical Vocabulary Part 351: Automatic Control.
- IEC 61512-1:1997, Batch control Part 1: Models and terminology
- IEC 62264-1:2003, Enterprise-control system integration Part 1: Models and terminology
- ISO/IEC 19501:2005, Information technology Open distributed processing Unified Modeling Language (UML) Version 1.4.2

3 Definitions

For the purposes of this Part 4 standard, the following definitions apply. Definitions and concepts expressed in the Part 1 standard apply, except where differences are explicitly stated in this Part 4 standard.

3.1 batch history:

all execution information collected pertaining to the production of a single batch, and may include common (non-batch specific) information.

3.2 batch production record:

a subset of the execution and business information that is retained based upon business requirements identified by the batch production record specification.

NOTE — This information could include the recipe procedural element execution information, both specific equipment information, operator comments, batch-related alarms, elements related to the definition of a batch (such as control recipe, master recipe, site and/or general recipe, batch schedule information), and information important to the batch (such as training logs, maintenance records, and environmental conditions).